Term Rewriting System R:
[X, Y, Z, X1, X2]
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

ACTIVATE(nfrom(X)) -> ACTIVATE(X)


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  1 + x1  
  POL(from(x1))=  1 + x1  
  POL(activate(x1))=  x1  
  POL(first(x1, x2))=  x1 + x2  
  POL(0)=  0  
  POL(cons(x1, x2))=  x2  
  POL(FIRST(x1, x2))=  x2  
  POL(n__s(x1))=  x1  
  POL(nil)=  0  
  POL(s(x1))=  x1  
  POL(ACTIVATE(x1))=  x1  
  POL(n__first(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polynomial Ordering


Dependency Pairs:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

ACTIVATE(ns(X)) -> ACTIVATE(X)


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  0  
  POL(from(x1))=  0  
  POL(activate(x1))=  x1  
  POL(first(x1, x2))=  x1 + x2  
  POL(0)=  0  
  POL(cons(x1, x2))=  x2  
  POL(FIRST(x1, x2))=  x2  
  POL(n__s(x1))=  1 + x1  
  POL(nil)=  0  
  POL(s(x1))=  1 + x1  
  POL(ACTIVATE(x1))=  x1  
  POL(n__first(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Polynomial Ordering


Dependency Pairs:

ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pairs can be strictly oriented:

ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  0  
  POL(from(x1))=  0  
  POL(activate(x1))=  x1  
  POL(first(x1, x2))=  1 + x1 + x2  
  POL(0)=  0  
  POL(cons(x1, x2))=  x2  
  POL(FIRST(x1, x2))=  x2  
  POL(n__s(x1))=  x1  
  POL(nil)=  0  
  POL(s(x1))=  x1  
  POL(ACTIVATE(x1))=  x1  
  POL(n__first(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 4
Dependency Graph


Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes