R
↳Dependency Pair Analysis
ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z))
ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z)
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(first(X1, X2)) -> FIRST(active(X1), X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> FIRST(X1, active(X2))
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
PROPER(first(X1, X2)) -> FIRST(proper(X1), proper(X2))
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
CONS(mark(X1), X2) -> CONS(X1, X2)
POL(mark(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(CONS(x1, x2)) = x1 + x2
CONS(x1, x2) -> CONS(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
POL(ok(x1)) = 1 + x1 POL(CONS(x1, x2)) = x1 + x2
CONS(x1, x2) -> CONS(x1, x2)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 8
↳AFS
...
→DP Problem 9
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
POL(FIRST(x1, x2)) = x1 + x2 POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1
FIRST(x1, x2) -> FIRST(x1, x2)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 10
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
POL(FIRST(x1, x2)) = x1 + x2 POL(mark(x1)) = 1 + x1
FIRST(x1, x2) -> FIRST(x1, x2)
mark(x1) -> mark(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 10
↳AFS
...
→DP Problem 11
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
FROM(mark(X)) -> FROM(X)
POL(FROM(x1)) = x1 POL(mark(x1)) = 1 + x1 POL(ok(x1)) = x1
FROM(x1) -> FROM(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 12
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
FROM(ok(X)) -> FROM(X)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
FROM(ok(X)) -> FROM(X)
POL(FROM(x1)) = x1 POL(ok(x1)) = 1 + x1
FROM(x1) -> FROM(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 12
↳AFS
...
→DP Problem 13
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
S(ok(X)) -> S(X)
POL(S(x1)) = x1 POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1
S(x1) -> S(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 14
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
S(mark(X)) -> S(X)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
S(mark(X)) -> S(X)
POL(S(x1)) = x1 POL(mark(x1)) = 1 + x1
S(x1) -> S(x1)
mark(x1) -> mark(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 14
↳AFS
...
→DP Problem 15
↳Dependency Graph
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
POL(from(x1)) = x1 POL(ACTIVE(x1)) = x1 POL(first(x1, x2)) = x1 + x2 POL(cons(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
ACTIVE(x1) -> ACTIVE(x1)
s(x1) -> s(x1)
from(x1) -> from(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 16
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
POL(from(x1)) = 1 + x1 POL(ACTIVE(x1)) = x1 POL(first(x1, x2)) = x1 + x2 POL(cons(x1, x2)) = x1 + x2
ACTIVE(x1) -> ACTIVE(x1)
from(x1) -> from(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 16
↳AFS
...
→DP Problem 17
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
POL(ACTIVE(x1)) = x1 POL(first(x1, x2)) = 1 + x1 + x2 POL(cons(x1, x2)) = x1 + x2
ACTIVE(x1) -> ACTIVE(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 16
↳AFS
...
→DP Problem 18
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
POL(ACTIVE(x1)) = x1 POL(cons(x1, x2)) = 1 + x1 + x2
ACTIVE(x1) -> ACTIVE(x1)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 16
↳AFS
...
→DP Problem 19
↳Dependency Graph
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 7
↳AFS
PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)
POL(from(x1)) = x1 POL(first(x1, x2)) = 1 + x1 + x2 POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = x1 + x2 POL(s(x1)) = x1
PROPER(x1) -> PROPER(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 20
↳Argument Filtering and Ordering
→DP Problem 7
↳AFS
PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
POL(from(x1)) = x1 POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = x1
PROPER(x1) -> PROPER(x1)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 20
↳AFS
...
→DP Problem 21
↳Argument Filtering and Ordering
→DP Problem 7
↳AFS
PROPER(from(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(from(X)) -> PROPER(X)
POL(from(x1)) = 1 + x1 POL(PROPER(x1)) = x1 POL(s(x1)) = x1
PROPER(x1) -> PROPER(x1)
from(x1) -> from(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 20
↳AFS
...
→DP Problem 22
↳Argument Filtering and Ordering
→DP Problem 7
↳AFS
PROPER(s(X)) -> PROPER(X)
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(s(X)) -> PROPER(X)
POL(PROPER(x1)) = x1 POL(s(x1)) = 1 + x1
PROPER(x1) -> PROPER(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 20
↳AFS
...
→DP Problem 23
↳Dependency Graph
→DP Problem 7
↳AFS
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Argument Filtering and Ordering
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
TOP(mark(X)) -> TOP(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
POL(from(x1)) = 1 + x1 POL(proper(x1)) = x1 POL(active(x1)) = x1 POL(first(x1, x2)) = x1 + x2 POL(0) = 1 POL(nil) = 0 POL(s(x1)) = 1 + x1 POL(mark(x1)) = 1 + x1 POL(TOP(x1)) = x1 POL(ok(x1)) = x1
TOP(x1) -> TOP(x1)
mark(x1) -> mark(x1)
proper(x1) -> proper(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
first(x1, x2) -> first(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x1
from(x1) -> from(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 24
↳Argument Filtering and Ordering
TOP(ok(X)) -> TOP(active(X))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
TOP(ok(X)) -> TOP(active(X))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
POL(from(x1)) = x1 POL(active(x1)) = x1 POL(first(x1, x2)) = x1 + x2 POL(0) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = x1 POL(ok(x1)) = 1 + x1
TOP(x1) -> TOP(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
first(x1, x2) -> first(x1, x2)
mark(x1) -> mark(x1)
s(x1) -> s(x1)
cons(x1, x2) -> x1
from(x1) -> from(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 24
↳AFS
...
→DP Problem 25
↳Dependency Graph
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))