R
↳Dependency Pair Analysis
ACTIVE(c) -> F(g(c))
ACTIVE(c) -> G(c)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
F(ok(X)) -> F(X)
G(ok(X)) -> G(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
F(ok(X)) -> F(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
F(ok(X)) -> F(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
active > mark
active > f > ok
active > g > ok
proper > f > ok
proper > g > ok
F(x1) -> F(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
f(x1) -> f(x1)
g(x1) -> g(x1)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
G(ok(X)) -> G(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
G(ok(X)) -> G(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
active > mark
active > f > {ok, g}
proper > f > {ok, g}
G(x1) -> G(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
f(x1) -> f(x1)
g(x1) -> g(x1)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
active > mark
active > {f, proper} > {ok, g}
PROPER(x1) -> PROPER(x1)
f(x1) -> f(x1)
g(x1) -> g(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
proper(x1) -> proper(x1)
ok(x1) -> ok(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 4
↳AFS
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
TOP(mark(X)) -> TOP(proper(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
c > f > mark > proper
c > f > g
TOP(x1) -> TOP(x1)
mark(x1) -> mark(x1)
proper(x1) -> proper(x1)
ok(x1) -> x1
active(x1) -> x1
f(x1) -> f
g(x1) -> g
top(x1) -> top(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 8
↳Argument Filtering and Ordering
TOP(ok(X)) -> TOP(active(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
TOP(ok(X)) -> TOP(active(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
proper > ok > active > mark
TOP(x1) -> TOP(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
f(x1) -> x1
g(x1) -> x1
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 8
↳AFS
...
→DP Problem 9
↳Dependency Graph
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))