R
↳Dependency Pair Analysis
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(0, Z) -> NIL
FIRST(s(X), cons(Y, Z)) -> CONS(Y, nfirst(X, activate(Z)))
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FROM(X) -> CONS(X, nfrom(s(X)))
FROM(X) -> S(X)
SEL1(s(X), cons(Y, Z)) -> SEL1(X, activate(Z))
SEL1(s(X), cons(Y, Z)) -> ACTIVATE(Z)
SEL1(0, cons(X, Z)) -> QUOTE(X)
FIRST1(s(X), cons(Y, Z)) -> QUOTE(Y)
FIRST1(s(X), cons(Y, Z)) -> FIRST1(X, activate(Z))
FIRST1(s(X), cons(Y, Z)) -> ACTIVATE(Z)
QUOTE(ns(X)) -> QUOTE(activate(X))
QUOTE(ns(X)) -> ACTIVATE(X)
QUOTE(nsel(X, Z)) -> SEL1(activate(X), activate(Z))
QUOTE(nsel(X, Z)) -> ACTIVATE(X)
QUOTE(nsel(X, Z)) -> ACTIVATE(Z)
QUOTE1(ncons(X, Z)) -> QUOTE(activate(X))
QUOTE1(ncons(X, Z)) -> ACTIVATE(X)
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
QUOTE1(ncons(X, Z)) -> ACTIVATE(Z)
QUOTE1(nfirst(X, Z)) -> FIRST1(activate(X), activate(Z))
QUOTE1(nfirst(X, Z)) -> ACTIVATE(X)
QUOTE1(nfirst(X, Z)) -> ACTIVATE(Z)
UNQUOTE(01) -> 0'
UNQUOTE(s1(X)) -> S(unquote(X))
UNQUOTE(s1(X)) -> UNQUOTE(X)
UNQUOTE1(nil1) -> NIL
UNQUOTE1(cons1(X, Z)) -> FCONS(unquote(X), unquote1(Z))
UNQUOTE1(cons1(X, Z)) -> UNQUOTE(X)
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
FCONS(X, Z) -> CONS(X, Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(n0) -> 0'
ACTIVATE(ncons(X1, X2)) -> CONS(X1, X2)
ACTIVATE(nnil) -> NIL
ACTIVATE(ns(X)) -> S(X)
ACTIVATE(nsel(X1, X2)) -> SEL(X1, X2)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
ACTIVATE(nsel(X1, X2)) -> SEL(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
ACTIVATE(nsel(X1, X2)) -> SEL(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
POL(from(x1)) = x1 POL(activate(x1)) = x1 POL(SEL(x1, x2)) = x2 POL(n__s(x1)) = 0 POL(sel(x1, x2)) = 1 + x2 POL(n__nil) = 0 POL(ACTIVATE(x1)) = x1 POL(n__from(x1)) = x1 POL(n__cons(x1, x2)) = x1 + x2 POL(n__sel(x1, x2)) = 1 + x2 POL(first(x1, x2)) = x2 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(FIRST(x1, x2)) = x2 POL(nil) = 0 POL(s(x1)) = 0 POL(n__0) = 0 POL(n__first(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 7
↳DGraph
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
POL(cons(x1, x2)) = x1 + x2 POL(FIRST(x1, x2)) = x2 POL(s(x1)) = 0 POL(ACTIVATE(x1)) = x1 POL(n__first(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 7
↳DGraph
...
→DP Problem 10
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 7
↳DGraph
...
→DP Problem 9
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
POL(from(x1)) = 0 POL(activate(x1)) = 0 POL(SEL(x1, x2)) = x1 POL(n__s(x1)) = 0 POL(sel(x1, x2)) = 0 POL(n__nil) = 0 POL(n__from(x1)) = 0 POL(n__cons(x1, x2)) = 0 POL(n__sel(x1, x2)) = 0 POL(first(x1, x2)) = 0 POL(0) = 0 POL(cons(x1, x2)) = 0 POL(nil) = 0 POL(s(x1)) = 1 + x1 POL(n__0) = 0 POL(n__first(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 7
↳DGraph
...
→DP Problem 11
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
UNQUOTE(s1(X)) -> UNQUOTE(X)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
UNQUOTE(s1(X)) -> UNQUOTE(X)
POL(s1(x1)) = 1 + x1 POL(UNQUOTE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 12
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Narrowing Transformation
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
QUOTE(nsel(X, Z)) -> SEL1(activate(X), activate(Z))
QUOTE(ns(X)) -> QUOTE(activate(X))
SEL1(0, cons(X, Z)) -> QUOTE(X)
SEL1(s(X), cons(Y, Z)) -> SEL1(X, activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
eight new Dependency Pairs are created:
SEL1(s(X), cons(Y, Z)) -> SEL1(X, activate(Z))
SEL1(s(X), cons(Y, nfirst(X1', X2'))) -> SEL1(X, first(X1', X2'))
SEL1(s(X), cons(Y, nfrom(X''))) -> SEL1(X, from(X''))
SEL1(s(X), cons(Y, n0)) -> SEL1(X, 0)
SEL1(s(X), cons(Y, ncons(X1', X2'))) -> SEL1(X, cons(X1', X2'))
SEL1(s(X), cons(Y, nnil)) -> SEL1(X, nil)
SEL1(s(X), cons(Y, ns(X''))) -> SEL1(X, s(X''))
SEL1(s(X), cons(Y, nsel(X1', X2'))) -> SEL1(X, sel(X1', X2'))
SEL1(s(X), cons(Y, Z')) -> SEL1(X, Z')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 13
↳Narrowing Transformation
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
SEL1(s(X), cons(Y, Z')) -> SEL1(X, Z')
SEL1(s(X), cons(Y, nsel(X1', X2'))) -> SEL1(X, sel(X1', X2'))
SEL1(s(X), cons(Y, ns(X''))) -> SEL1(X, s(X''))
SEL1(s(X), cons(Y, nnil)) -> SEL1(X, nil)
SEL1(s(X), cons(Y, ncons(X1', X2'))) -> SEL1(X, cons(X1', X2'))
SEL1(s(X), cons(Y, n0)) -> SEL1(X, 0)
SEL1(s(X), cons(Y, nfrom(X''))) -> SEL1(X, from(X''))
SEL1(s(X), cons(Y, nfirst(X1', X2'))) -> SEL1(X, first(X1', X2'))
QUOTE(ns(X)) -> QUOTE(activate(X))
SEL1(0, cons(X, Z)) -> QUOTE(X)
QUOTE(nsel(X, Z)) -> SEL1(activate(X), activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
eight new Dependency Pairs are created:
QUOTE(ns(X)) -> QUOTE(activate(X))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 13
↳Nar
...
→DP Problem 14
↳Narrowing Transformation
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
→DP Problem 6
↳Remaining
QUOTE(ns(X'')) -> QUOTE(X'')
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
SEL1(s(X), cons(Y, nsel(X1', X2'))) -> SEL1(X, sel(X1', X2'))
SEL1(s(X), cons(Y, ns(X''))) -> SEL1(X, s(X''))
SEL1(s(X), cons(Y, nnil)) -> SEL1(X, nil)
SEL1(s(X), cons(Y, ncons(X1', X2'))) -> SEL1(X, cons(X1', X2'))
SEL1(s(X), cons(Y, n0)) -> SEL1(X, 0)
SEL1(s(X), cons(Y, nfrom(X''))) -> SEL1(X, from(X''))
SEL1(s(X), cons(Y, nfirst(X1', X2'))) -> SEL1(X, first(X1', X2'))
QUOTE(nsel(X, Z)) -> SEL1(activate(X), activate(Z))
SEL1(0, cons(X, Z)) -> QUOTE(X)
SEL1(s(X), cons(Y, Z')) -> SEL1(X, Z')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
16 new Dependency Pairs are created:
QUOTE(nsel(X, Z)) -> SEL1(activate(X), activate(Z))
QUOTE(nsel(nfirst(X1', X2'), Z)) -> SEL1(first(X1', X2'), activate(Z))
QUOTE(nsel(nfrom(X''), Z)) -> SEL1(from(X''), activate(Z))
QUOTE(nsel(n0, Z)) -> SEL1(0, activate(Z))
QUOTE(nsel(ncons(X1', X2'), Z)) -> SEL1(cons(X1', X2'), activate(Z))
QUOTE(nsel(nnil, Z)) -> SEL1(nil, activate(Z))
QUOTE(nsel(ns(X''), Z)) -> SEL1(s(X''), activate(Z))
QUOTE(nsel(nsel(X1', X2'), Z)) -> SEL1(sel(X1', X2'), activate(Z))
QUOTE(nsel(X'', Z)) -> SEL1(X'', activate(Z))
QUOTE(nsel(X, nfirst(X1', X2'))) -> SEL1(activate(X), first(X1', X2'))
QUOTE(nsel(X, nfrom(X''))) -> SEL1(activate(X), from(X''))
QUOTE(nsel(X, n0)) -> SEL1(activate(X), 0)
QUOTE(nsel(X, ncons(X1', X2'))) -> SEL1(activate(X), cons(X1', X2'))
QUOTE(nsel(X, nnil)) -> SEL1(activate(X), nil)
QUOTE(nsel(X, ns(X''))) -> SEL1(activate(X), s(X''))
QUOTE(nsel(X, nsel(X1', X2'))) -> SEL1(activate(X), sel(X1', X2'))
QUOTE(nsel(X, Z')) -> SEL1(activate(X), Z')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
→DP Problem 6
↳Remaining Obligation(s)
QUOTE(nsel(X, Z')) -> SEL1(activate(X), Z')
QUOTE(nsel(X, nsel(X1', X2'))) -> SEL1(activate(X), sel(X1', X2'))
QUOTE(nsel(X, ns(X''))) -> SEL1(activate(X), s(X''))
QUOTE(nsel(X, nnil)) -> SEL1(activate(X), nil)
QUOTE(nsel(X, ncons(X1', X2'))) -> SEL1(activate(X), cons(X1', X2'))
QUOTE(nsel(X, n0)) -> SEL1(activate(X), 0)
QUOTE(nsel(X, nfrom(X''))) -> SEL1(activate(X), from(X''))
QUOTE(nsel(X, nfirst(X1', X2'))) -> SEL1(activate(X), first(X1', X2'))
QUOTE(nsel(X'', Z)) -> SEL1(X'', activate(Z))
QUOTE(nsel(nsel(X1', X2'), Z)) -> SEL1(sel(X1', X2'), activate(Z))
QUOTE(nsel(ns(X''), Z)) -> SEL1(s(X''), activate(Z))
QUOTE(nsel(nnil, Z)) -> SEL1(nil, activate(Z))
QUOTE(nsel(ncons(X1', X2'), Z)) -> SEL1(cons(X1', X2'), activate(Z))
QUOTE(nsel(n0, Z)) -> SEL1(0, activate(Z))
SEL1(s(X), cons(Y, Z')) -> SEL1(X, Z')
SEL1(s(X), cons(Y, nsel(X1', X2'))) -> SEL1(X, sel(X1', X2'))
SEL1(s(X), cons(Y, ns(X''))) -> SEL1(X, s(X''))
SEL1(s(X), cons(Y, nnil)) -> SEL1(X, nil)
SEL1(s(X), cons(Y, ncons(X1', X2'))) -> SEL1(X, cons(X1', X2'))
SEL1(s(X), cons(Y, n0)) -> SEL1(X, 0)
SEL1(s(X), cons(Y, nfrom(X''))) -> SEL1(X, from(X''))
SEL1(s(X), cons(Y, nfirst(X1', X2'))) -> SEL1(X, first(X1', X2'))
QUOTE(nsel(nfrom(X''), Z)) -> SEL1(from(X''), activate(Z))
SEL1(0, cons(X, Z)) -> QUOTE(X)
QUOTE(nsel(nfirst(X1', X2'), Z)) -> SEL1(first(X1', X2'), activate(Z))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
FIRST1(s(X), cons(Y, Z)) -> FIRST1(X, activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
→DP Problem 6
↳Remaining Obligation(s)
QUOTE(nsel(X, Z')) -> SEL1(activate(X), Z')
QUOTE(nsel(X, nsel(X1', X2'))) -> SEL1(activate(X), sel(X1', X2'))
QUOTE(nsel(X, ns(X''))) -> SEL1(activate(X), s(X''))
QUOTE(nsel(X, nnil)) -> SEL1(activate(X), nil)
QUOTE(nsel(X, ncons(X1', X2'))) -> SEL1(activate(X), cons(X1', X2'))
QUOTE(nsel(X, n0)) -> SEL1(activate(X), 0)
QUOTE(nsel(X, nfrom(X''))) -> SEL1(activate(X), from(X''))
QUOTE(nsel(X, nfirst(X1', X2'))) -> SEL1(activate(X), first(X1', X2'))
QUOTE(nsel(X'', Z)) -> SEL1(X'', activate(Z))
QUOTE(nsel(nsel(X1', X2'), Z)) -> SEL1(sel(X1', X2'), activate(Z))
QUOTE(nsel(ns(X''), Z)) -> SEL1(s(X''), activate(Z))
QUOTE(nsel(nnil, Z)) -> SEL1(nil, activate(Z))
QUOTE(nsel(ncons(X1', X2'), Z)) -> SEL1(cons(X1', X2'), activate(Z))
QUOTE(nsel(n0, Z)) -> SEL1(0, activate(Z))
SEL1(s(X), cons(Y, Z')) -> SEL1(X, Z')
SEL1(s(X), cons(Y, nsel(X1', X2'))) -> SEL1(X, sel(X1', X2'))
SEL1(s(X), cons(Y, ns(X''))) -> SEL1(X, s(X''))
SEL1(s(X), cons(Y, nnil)) -> SEL1(X, nil)
SEL1(s(X), cons(Y, ncons(X1', X2'))) -> SEL1(X, cons(X1', X2'))
SEL1(s(X), cons(Y, n0)) -> SEL1(X, 0)
SEL1(s(X), cons(Y, nfrom(X''))) -> SEL1(X, from(X''))
SEL1(s(X), cons(Y, nfirst(X1', X2'))) -> SEL1(X, first(X1', X2'))
QUOTE(nsel(nfrom(X''), Z)) -> SEL1(from(X''), activate(Z))
SEL1(0, cons(X, Z)) -> QUOTE(X)
QUOTE(nsel(nfirst(X1', X2'), Z)) -> SEL1(first(X1', X2'), activate(Z))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
FIRST1(s(X), cons(Y, Z)) -> FIRST1(X, activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
→DP Problem 6
↳Remaining Obligation(s)
QUOTE(nsel(X, Z')) -> SEL1(activate(X), Z')
QUOTE(nsel(X, nsel(X1', X2'))) -> SEL1(activate(X), sel(X1', X2'))
QUOTE(nsel(X, ns(X''))) -> SEL1(activate(X), s(X''))
QUOTE(nsel(X, nnil)) -> SEL1(activate(X), nil)
QUOTE(nsel(X, ncons(X1', X2'))) -> SEL1(activate(X), cons(X1', X2'))
QUOTE(nsel(X, n0)) -> SEL1(activate(X), 0)
QUOTE(nsel(X, nfrom(X''))) -> SEL1(activate(X), from(X''))
QUOTE(nsel(X, nfirst(X1', X2'))) -> SEL1(activate(X), first(X1', X2'))
QUOTE(nsel(X'', Z)) -> SEL1(X'', activate(Z))
QUOTE(nsel(nsel(X1', X2'), Z)) -> SEL1(sel(X1', X2'), activate(Z))
QUOTE(nsel(ns(X''), Z)) -> SEL1(s(X''), activate(Z))
QUOTE(nsel(nnil, Z)) -> SEL1(nil, activate(Z))
QUOTE(nsel(ncons(X1', X2'), Z)) -> SEL1(cons(X1', X2'), activate(Z))
QUOTE(nsel(n0, Z)) -> SEL1(0, activate(Z))
SEL1(s(X), cons(Y, Z')) -> SEL1(X, Z')
SEL1(s(X), cons(Y, nsel(X1', X2'))) -> SEL1(X, sel(X1', X2'))
SEL1(s(X), cons(Y, ns(X''))) -> SEL1(X, s(X''))
SEL1(s(X), cons(Y, nnil)) -> SEL1(X, nil)
SEL1(s(X), cons(Y, ncons(X1', X2'))) -> SEL1(X, cons(X1', X2'))
SEL1(s(X), cons(Y, n0)) -> SEL1(X, 0)
SEL1(s(X), cons(Y, nfrom(X''))) -> SEL1(X, from(X''))
SEL1(s(X), cons(Y, nfirst(X1', X2'))) -> SEL1(X, first(X1', X2'))
QUOTE(nsel(nfrom(X''), Z)) -> SEL1(from(X''), activate(Z))
SEL1(0, cons(X, Z)) -> QUOTE(X)
QUOTE(nsel(nfirst(X1', X2'), Z)) -> SEL1(first(X1', X2'), activate(Z))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
FIRST1(s(X), cons(Y, Z)) -> FIRST1(X, activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
→DP Problem 6
↳Remaining Obligation(s)
QUOTE(nsel(X, Z')) -> SEL1(activate(X), Z')
QUOTE(nsel(X, nsel(X1', X2'))) -> SEL1(activate(X), sel(X1', X2'))
QUOTE(nsel(X, ns(X''))) -> SEL1(activate(X), s(X''))
QUOTE(nsel(X, nnil)) -> SEL1(activate(X), nil)
QUOTE(nsel(X, ncons(X1', X2'))) -> SEL1(activate(X), cons(X1', X2'))
QUOTE(nsel(X, n0)) -> SEL1(activate(X), 0)
QUOTE(nsel(X, nfrom(X''))) -> SEL1(activate(X), from(X''))
QUOTE(nsel(X, nfirst(X1', X2'))) -> SEL1(activate(X), first(X1', X2'))
QUOTE(nsel(X'', Z)) -> SEL1(X'', activate(Z))
QUOTE(nsel(nsel(X1', X2'), Z)) -> SEL1(sel(X1', X2'), activate(Z))
QUOTE(nsel(ns(X''), Z)) -> SEL1(s(X''), activate(Z))
QUOTE(nsel(nnil, Z)) -> SEL1(nil, activate(Z))
QUOTE(nsel(ncons(X1', X2'), Z)) -> SEL1(cons(X1', X2'), activate(Z))
QUOTE(nsel(n0, Z)) -> SEL1(0, activate(Z))
SEL1(s(X), cons(Y, Z')) -> SEL1(X, Z')
SEL1(s(X), cons(Y, nsel(X1', X2'))) -> SEL1(X, sel(X1', X2'))
SEL1(s(X), cons(Y, ns(X''))) -> SEL1(X, s(X''))
SEL1(s(X), cons(Y, nnil)) -> SEL1(X, nil)
SEL1(s(X), cons(Y, ncons(X1', X2'))) -> SEL1(X, cons(X1', X2'))
SEL1(s(X), cons(Y, n0)) -> SEL1(X, 0)
SEL1(s(X), cons(Y, nfrom(X''))) -> SEL1(X, from(X''))
SEL1(s(X), cons(Y, nfirst(X1', X2'))) -> SEL1(X, first(X1', X2'))
QUOTE(nsel(nfrom(X''), Z)) -> SEL1(from(X''), activate(Z))
SEL1(0, cons(X, Z)) -> QUOTE(X)
QUOTE(nsel(nfirst(X1', X2'), Z)) -> SEL1(first(X1', X2'), activate(Z))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
FIRST1(s(X), cons(Y, Z)) -> FIRST1(X, activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X