Term Rewriting System R:
[X, Y]
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(X) -> IF(X, c, nf(ntrue))
IF(false, X, Y) -> ACTIVATE(Y)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(ntrue) -> TRUE

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> F(activate(X))
IF(false, X, Y) -> ACTIVATE(Y)
F(X) -> IF(X, c, nf(ntrue))


Rules:


f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X





The following dependency pair can be strictly oriented:

ACTIVATE(nf(X)) -> ACTIVATE(X)


Additionally, the following rules can be oriented:

f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__f(x1))=  1 + x1  
  POL(n__true)=  0  
  POL(activate(x1))=  x1  
  POL(if(x1, x2, x3))=  x2 + x3  
  POL(c)=  0  
  POL(false)=  0  
  POL(true)=  0  
  POL(ACTIVATE(x1))=  x1  
  POL(f(x1))=  1 + x1  
  POL(F(x1))=  1  
  POL(IF(x1, x2, x3))=  x3  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polynomial Ordering


Dependency Pairs:

ACTIVATE(nf(X)) -> F(activate(X))
IF(false, X, Y) -> ACTIVATE(Y)
F(X) -> IF(X, c, nf(ntrue))


Rules:


f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X





The following dependency pair can be strictly oriented:

IF(false, X, Y) -> ACTIVATE(Y)


Additionally, the following rules can be oriented:

f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__f(x1))=  x1  
  POL(n__true)=  0  
  POL(activate(x1))=  x1  
  POL(if(x1, x2, x3))=  x2 + x3  
  POL(c)=  0  
  POL(false)=  1  
  POL(true)=  0  
  POL(ACTIVATE(x1))=  x1  
  POL(f(x1))=  x1  
  POL(F(x1))=  x1  
  POL(IF(x1, x2, x3))=  x1 + x3  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Dependency Graph


Dependency Pairs:

ACTIVATE(nf(X)) -> F(activate(X))
F(X) -> IF(X, c, nf(ntrue))


Rules:


f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes