Term Rewriting System R:
[X, Y, X1, X2, X3]
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(f(X)) -> IF(X, c, f(true))
ACTIVE(f(X)) -> F(true)
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(if(X1, X2, X3)) -> IF(active(X1), X2, X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) -> IF(X1, active(X2), X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X2)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
IF(X1, mark(X2), X3) -> IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(if(X1, X2, X3)) -> IF(proper(X1), proper(X2), proper(X3))
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains five SCCs.


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)
       →DP Problem 5
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)
       →DP Problem 5
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)
       →DP Problem 5
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)
       →DP Problem 5
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)
       →DP Problem 5
Remaining Obligation(s)




The following remains to be proven:

Termination of R could not be shown.
Duration:
0:00 minutes