R
↳Dependency Pair Analysis
F(X) -> G(X)
G(s(X)) -> G(X)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nf(X)) -> F(X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
G(s(X)) -> G(X)
f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X
G(s(X)) -> G(X)
f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X
sel > activate > f > nf
sel > activate > f > cons
sel > activate > f > g > s
G(x1) -> G(x1)
s(x1) -> s(x1)
f(x1) -> f(x1)
cons(x1, x2) -> cons(x1, x2)
nf(x1) -> nf(x1)
g(x1) -> g(x1)
sel(x1, x2) -> sel(x1, x2)
activate(x1) -> activate(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X
f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
SEL > activate > f > nf
SEL > activate > f > cons
SEL > activate > f > g > s
sel > activate > f > nf
sel > activate > f > cons
sel > activate > f > g > s
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
activate(x1) -> activate(x1)
nf(x1) -> nf(x1)
f(x1) -> f(x1)
g(x1) -> g(x1)
sel(x1, x2) -> sel(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X