Term Rewriting System R:
[X, Y, Z]
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

G(s(X)) -> G(X)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(ng(X)) -> G(activate(X))
ACTIVATE(ng(X)) -> ACTIVATE(X)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:

G(s(X)) -> G(X)


Rules:


f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

G(s(X)) -> G(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:


Rules:


f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS


Dependency Pairs:

ACTIVATE(ng(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)


Rules:


f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X





The following dependency pairs can be strictly oriented:

ACTIVATE(ng(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVATE(x1) -> ACTIVATE(x1)
ng(x1) -> ng(x1)
nf(x1) -> nf(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
AFS


Dependency Pair:


Rules:


f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering


Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))


Rules:


f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))


The following usable rules using the Ce-refinement can be oriented:

activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
SEL > activate > f > nf
SEL > activate > f > cons
SEL > activate > f > ng
SEL > activate > g > ng
SEL > activate > g > s

resulting in one new DP problem.
Used Argument Filtering System:
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
activate(x1) -> activate(x1)
nf(x1) -> nf(x1)
f(x1) -> f(x1)
ng(x1) -> ng(x1)
g(x1) -> g(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes