R
↳Dependency Pair Analysis
G(s(X)) -> G(X)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(ng(X)) -> G(activate(X))
ACTIVATE(ng(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
G(s(X)) -> G(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
ACTIVATE(ng(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
G(s(X)) -> G(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
ACTIVATE(ng(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
G(s(X)) -> G(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
ACTIVATE(ng(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X