Term Rewriting System R:
[X, Y, Z, X1, X2]
active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(f(X)) -> CONS(X, f(g(X)))
ACTIVE(f(X)) -> F(g(X))
ACTIVE(f(X)) -> G(X)
ACTIVE(g(0)) -> S(0)
ACTIVE(g(s(X))) -> S(s(g(X)))
ACTIVE(g(s(X))) -> S(g(X))
ACTIVE(g(s(X))) -> G(X)
ACTIVE(sel(s(X), cons(Y, Z))) -> SEL(X, Z)
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(g(X)) -> G(active(X))
ACTIVE(g(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(sel(X1, X2)) -> SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
G(mark(X)) -> G(X)
G(ok(X)) -> G(X)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(sel(X1, X2)) -> SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains eight SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  0  
  POL(ok(x1))=  1 + x1  
  POL(CONS(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 9
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:

CONS(mark(X1), X2) -> CONS(X1, X2)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

CONS(mark(X1), X2) -> CONS(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(CONS(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 9
Polo
             ...
               →DP Problem 10
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

F(ok(X)) -> F(X)
F(mark(X)) -> F(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

F(ok(X)) -> F(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(F(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 11
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:

F(mark(X)) -> F(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

F(mark(X)) -> F(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(F(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 11
Polo
             ...
               →DP Problem 12
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

G(ok(X)) -> G(X)
G(mark(X)) -> G(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

G(ok(X)) -> G(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 13
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:

G(mark(X)) -> G(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

G(mark(X)) -> G(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 13
Polo
             ...
               →DP Problem 14
Dependency Graph
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 15
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:

S(mark(X)) -> S(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

S(mark(X)) -> S(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 16
Dependency Graph
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

SEL(ok(X1), ok(X2)) -> SEL(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 17
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

SEL(mark(X1), X2) -> SEL(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 17
Polo
             ...
               →DP Problem 18
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:

SEL(X1, mark(X2)) -> SEL(X1, X2)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

SEL(X1, mark(X2)) -> SEL(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x2  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 17
Polo
             ...
               →DP Problem 19
Dependency Graph
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(g(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(f(X)) -> ACTIVE(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(g(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 20
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(g(X)) -> ACTIVE(X)
ACTIVE(f(X)) -> ACTIVE(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(f(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(g(x1))=  x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(f(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 21
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(g(X)) -> ACTIVE(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(g(x1))=  x1  
  POL(sel(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 22
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pairs:

ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(g(X)) -> ACTIVE(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(s(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(g(x1))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 23
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:

ACTIVE(g(X)) -> ACTIVE(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(g(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(g(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 24
Dependency Graph
       →DP Problem 7
Polo
       →DP Problem 8
Nar


Dependency Pair:


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polynomial Ordering
       →DP Problem 8
Nar


Dependency Pairs:

PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(f(X)) -> PROPER(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(sel(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polynomial Ordering
       →DP Problem 8
Nar


Dependency Pairs:

PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(f(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(f(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 26
Polynomial Ordering
       →DP Problem 8
Nar


Dependency Pairs:

PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(sel(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 27
Polynomial Ordering
       →DP Problem 8
Nar


Dependency Pairs:

PROPER(s(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(s(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 28
Polynomial Ordering
       →DP Problem 8
Nar


Dependency Pair:

PROPER(g(X)) -> PROPER(X)


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(g(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  1 + x1  
  POL(PROPER(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 29
Dependency Graph
       →DP Problem 8
Nar


Dependency Pair:


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Narrowing Transformation


Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(mark(X)) -> TOP(proper(X))
six new Dependency Pairs are created:

TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar
           →DP Problem 30
Narrowing Transformation


Dependency Pairs:

TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(X)) -> TOP(active(X))


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(ok(X)) -> TOP(active(X))
11 new Dependency Pairs are created:

TOP(ok(f(X''))) -> TOP(mark(cons(X'', f(g(X'')))))
TOP(ok(g(0))) -> TOP(mark(s(0)))
TOP(ok(g(s(X'')))) -> TOP(mark(s(s(g(X'')))))
TOP(ok(sel(0, cons(X'', Y')))) -> TOP(mark(X''))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 31
Polynomial Ordering


Dependency Pairs:

TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(sel(0, cons(X'', Y')))) -> TOP(mark(X''))
TOP(ok(g(s(X'')))) -> TOP(mark(s(s(g(X'')))))
TOP(ok(g(0))) -> TOP(mark(s(0)))
TOP(ok(f(X''))) -> TOP(mark(cons(X'', f(g(X'')))))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(sel(0, cons(X'', Y')))) -> TOP(mark(X''))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(active(x1))=  x1  
  POL(proper(x1))=  x1  
  POL(0)=  0  
  POL(g(x1))=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(s(x1))=  0  
  POL(sel(x1, x2))=  1 + x2  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(TOP(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 32
Polynomial Ordering


Dependency Pairs:

TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(g(s(X'')))) -> TOP(mark(s(s(g(X'')))))
TOP(ok(g(0))) -> TOP(mark(s(0)))
TOP(ok(f(X''))) -> TOP(mark(cons(X'', f(g(X'')))))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(f(X''))) -> TOP(mark(cons(X'', f(g(X'')))))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(active(x1))=  0  
  POL(proper(x1))=  0  
  POL(0)=  0  
  POL(g(x1))=  0  
  POL(cons(x1, x2))=  0  
  POL(s(x1))=  0  
  POL(sel(x1, x2))=  0  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(TOP(x1))=  x1  
  POL(f(x1))=  1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 33
Polynomial Ordering


Dependency Pairs:

TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(g(s(X'')))) -> TOP(mark(s(s(g(X'')))))
TOP(ok(g(0))) -> TOP(mark(s(0)))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

TOP(ok(g(s(X'')))) -> TOP(mark(s(s(g(X'')))))
TOP(ok(g(0))) -> TOP(mark(s(0)))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(active(x1))=  0  
  POL(proper(x1))=  0  
  POL(0)=  0  
  POL(g(x1))=  1  
  POL(cons(x1, x2))=  0  
  POL(s(x1))=  0  
  POL(sel(x1, x2))=  0  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(TOP(x1))=  x1  
  POL(f(x1))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 34
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))


Rules:


active(f(X)) -> mark(cons(X, f(g(X))))
active(g(0)) -> mark(s(0))
active(g(s(X))) -> mark(s(s(g(X))))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(g(X)) -> g(active(X))
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(f(X)) -> f(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))




Termination of R could not be shown.
Duration:
0:26 minutes