Term Rewriting System R:
[X, XS, N]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))
AFTER(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfrom(X)) -> FROM(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pair:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(X) -> X





The following dependency pair can be strictly oriented:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))


Additionally, the following rules can be oriented:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(X) -> X


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  0  
  POL(n__from(x1))=  0  
  POL(activate(x1))=  x1  
  POL(AFTER(x1, x2))=  x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x2  
  POL(s(x1))=  1 + x1  
  POL(after(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes