Term Rewriting System R:
[X, XS, N]
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))
AFTER(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pairs:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pairs can be strictly oriented:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVATE(x1) -> ACTIVATE(x1)
ns(x1) -> ns(x1)
nfrom(x1) -> nfrom(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pair:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))


The following usable rules using the Ce-refinement can be oriented:

activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
AFTER > activate > from > ns
AFTER > activate > from > nfrom
AFTER > activate > from > cons
AFTER > activate > s > ns

resulting in one new DP problem.
Used Argument Filtering System:
AFTER(x1, x2) -> AFTER(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
activate(x1) -> activate(x1)
nfrom(x1) -> nfrom(x1)
from(x1) -> from(x1)
ns(x1) -> ns(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes