R
↳Dependency Pair Analysis
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(after(s(N), cons(X, XS))) -> AFTER(N, XS)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(after(X1, X2)) -> AFTER(active(X1), X2)
ACTIVE(after(X1, X2)) -> ACTIVE(X1)
ACTIVE(after(X1, X2)) -> AFTER(X1, active(X2))
ACTIVE(after(X1, X2)) -> ACTIVE(X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
AFTER(mark(X1), X2) -> AFTER(X1, X2)
AFTER(X1, mark(X2)) -> AFTER(X1, X2)
AFTER(ok(X1), ok(X2)) -> AFTER(X1, X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(after(X1, X2)) -> AFTER(proper(X1), proper(X2))
PROPER(after(X1, X2)) -> PROPER(X1)
PROPER(after(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
active > {proper, s} > cons > {mark, from} > ok
active > {proper, s} > after > {mark, from} > ok
CONS(x1, x2) -> CONS(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)
after(x1, x2) -> after(x1, x2)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 8
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
active > {proper, after} > cons > {ok, from} > mark
active > {proper, after} > s > {ok, from} > mark
FROM(x1) -> FROM(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)
after(x1, x2) -> after(x1, x2)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
active > {proper, from, after} > cons > {mark, ok, s}
S(x1) -> S(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
active(x1) -> active(x1)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)
after(x1, x2) -> after(x1, x2)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 10
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
AFTER(ok(X1), ok(X2)) -> AFTER(X1, X2)
AFTER(X1, mark(X2)) -> AFTER(X1, X2)
AFTER(mark(X1), X2) -> AFTER(X1, X2)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
AFTER(ok(X1), ok(X2)) -> AFTER(X1, X2)
AFTER(X1, mark(X2)) -> AFTER(X1, X2)
AFTER(mark(X1), X2) -> AFTER(X1, X2)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
{active, proper, s} > cons > {ok, from} > mark
{active, proper, s} > after > {ok, from} > mark
AFTER(x1, x2) -> AFTER(x1, x2)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
active(x1) -> active(x1)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)
after(x1, x2) -> after(x1, x2)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 11
↳Dependency Graph
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
ACTIVE(after(X1, X2)) -> ACTIVE(X2)
ACTIVE(after(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(after(X1, X2)) -> ACTIVE(X2)
ACTIVE(after(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
{active, proper, after} > cons > {mark, ok, from}
{active, proper, after} > s > {mark, ok, from}
ACTIVE(x1) -> ACTIVE(x1)
s(x1) -> s(x1)
after(x1, x2) -> after(x1, x2)
from(x1) -> from(x1)
cons(x1, x2) -> cons(x1, x2)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 12
↳Dependency Graph
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 7
↳Remaining
PROPER(after(X1, X2)) -> PROPER(X2)
PROPER(after(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(after(X1, X2)) -> PROPER(X2)
PROPER(after(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
active > {cons, proper, after} > s > {mark, from} > ok
PROPER(x1) -> PROPER(x1)
after(x1, x2) -> after(x1, x2)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 13
↳Dependency Graph
→DP Problem 7
↳Remaining
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(from(X)) -> mark(cons(X, from(s(X))))
active(after(0, XS)) -> mark(XS)
active(after(s(N), cons(X, XS))) -> mark(after(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(after(X1, X2)) -> after(active(X1), X2)
active(after(X1, X2)) -> after(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
after(mark(X1), X2) -> mark(after(X1, X2))
after(X1, mark(X2)) -> mark(after(X1, X2))
after(ok(X1), ok(X2)) -> ok(after(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(after(X1, X2)) -> after(proper(X1), proper(X2))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))