Term Rewriting System R:
[X, XS, N, Y, YS, X1, X2]
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(sel(s(N), cons(X, XS))) -> SEL(N, XS)
ACTIVE(minus(s(X), s(Y))) -> MINUS(X, Y)
ACTIVE(quot(s(X), s(Y))) -> S(quot(minus(X, Y), s(Y)))
ACTIVE(quot(s(X), s(Y))) -> QUOT(minus(X, Y), s(Y))
ACTIVE(quot(s(X), s(Y))) -> MINUS(X, Y)
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) -> CONS(quot(X, Y), zWquot(XS, YS))
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) -> QUOT(X, Y)
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) -> ZWQUOT(XS, YS)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(sel(X1, X2)) -> SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(minus(X1, X2)) -> MINUS(active(X1), X2)
ACTIVE(minus(X1, X2)) -> ACTIVE(X1)
ACTIVE(minus(X1, X2)) -> MINUS(X1, active(X2))
ACTIVE(minus(X1, X2)) -> ACTIVE(X2)
ACTIVE(quot(X1, X2)) -> QUOT(active(X1), X2)
ACTIVE(quot(X1, X2)) -> ACTIVE(X1)
ACTIVE(quot(X1, X2)) -> QUOT(X1, active(X2))
ACTIVE(quot(X1, X2)) -> ACTIVE(X2)
ACTIVE(zWquot(X1, X2)) -> ZWQUOT(active(X1), X2)
ACTIVE(zWquot(X1, X2)) -> ACTIVE(X1)
ACTIVE(zWquot(X1, X2)) -> ZWQUOT(X1, active(X2))
ACTIVE(zWquot(X1, X2)) -> ACTIVE(X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
MINUS(mark(X1), X2) -> MINUS(X1, X2)
MINUS(X1, mark(X2)) -> MINUS(X1, X2)
MINUS(ok(X1), ok(X2)) -> MINUS(X1, X2)
QUOT(mark(X1), X2) -> QUOT(X1, X2)
QUOT(X1, mark(X2)) -> QUOT(X1, X2)
QUOT(ok(X1), ok(X2)) -> QUOT(X1, X2)
ZWQUOT(mark(X1), X2) -> ZWQUOT(X1, X2)
ZWQUOT(X1, mark(X2)) -> ZWQUOT(X1, X2)
ZWQUOT(ok(X1), ok(X2)) -> ZWQUOT(X1, X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(sel(X1, X2)) -> SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(minus(X1, X2)) -> MINUS(proper(X1), proper(X2))
PROPER(minus(X1, X2)) -> PROPER(X1)
PROPER(minus(X1, X2)) -> PROPER(X2)
PROPER(quot(X1, X2)) -> QUOT(proper(X1), proper(X2))
PROPER(quot(X1, X2)) -> PROPER(X1)
PROPER(quot(X1, X2)) -> PROPER(X2)
PROPER(zWquot(X1, X2)) -> ZWQUOT(proper(X1), proper(X2))
PROPER(zWquot(X1, X2)) -> PROPER(X1)
PROPER(zWquot(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
Furthermore, R contains 10 SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
Dependency Pairs:
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
- CONS(mark(X1), X2) -> CONS(X1, X2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
Dependency Pairs:
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- FROM(ok(X)) -> FROM(X)
- FROM(mark(X)) -> FROM(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
Dependency Pairs:
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- S(ok(X)) -> S(X)
- S(mark(X)) -> S(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
Dependency Pairs:
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
- SEL(X1, mark(X2)) -> SEL(X1, X2)
- SEL(mark(X1), X2) -> SEL(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
Dependency Pairs:
MINUS(ok(X1), ok(X2)) -> MINUS(X1, X2)
MINUS(X1, mark(X2)) -> MINUS(X1, X2)
MINUS(mark(X1), X2) -> MINUS(X1, X2)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- MINUS(ok(X1), ok(X2)) -> MINUS(X1, X2)
- MINUS(X1, mark(X2)) -> MINUS(X1, X2)
- MINUS(mark(X1), X2) -> MINUS(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳Size-Change Principle
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
Dependency Pairs:
QUOT(ok(X1), ok(X2)) -> QUOT(X1, X2)
QUOT(X1, mark(X2)) -> QUOT(X1, X2)
QUOT(mark(X1), X2) -> QUOT(X1, X2)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- QUOT(ok(X1), ok(X2)) -> QUOT(X1, X2)
- QUOT(X1, mark(X2)) -> QUOT(X1, X2)
- QUOT(mark(X1), X2) -> QUOT(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳Size-Change Principle
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
Dependency Pairs:
ZWQUOT(ok(X1), ok(X2)) -> ZWQUOT(X1, X2)
ZWQUOT(X1, mark(X2)) -> ZWQUOT(X1, X2)
ZWQUOT(mark(X1), X2) -> ZWQUOT(X1, X2)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ZWQUOT(ok(X1), ok(X2)) -> ZWQUOT(X1, X2)
- ZWQUOT(X1, mark(X2)) -> ZWQUOT(X1, X2)
- ZWQUOT(mark(X1), X2) -> ZWQUOT(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Size-Change Principle
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
Dependency Pairs:
ACTIVE(zWquot(X1, X2)) -> ACTIVE(X2)
ACTIVE(zWquot(X1, X2)) -> ACTIVE(X1)
ACTIVE(quot(X1, X2)) -> ACTIVE(X2)
ACTIVE(quot(X1, X2)) -> ACTIVE(X1)
ACTIVE(minus(X1, X2)) -> ACTIVE(X2)
ACTIVE(minus(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ACTIVE(zWquot(X1, X2)) -> ACTIVE(X2)
- ACTIVE(zWquot(X1, X2)) -> ACTIVE(X1)
- ACTIVE(quot(X1, X2)) -> ACTIVE(X2)
- ACTIVE(quot(X1, X2)) -> ACTIVE(X1)
- ACTIVE(minus(X1, X2)) -> ACTIVE(X2)
- ACTIVE(minus(X1, X2)) -> ACTIVE(X1)
- ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
- ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
- ACTIVE(s(X)) -> ACTIVE(X)
- ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
- ACTIVE(from(X)) -> ACTIVE(X)
and get the following Size-Change Graph(s): {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
from(x1) -> from(x1)
zWquot(x1, x2) -> zWquot(x1, x2)
cons(x1, x2) -> cons(x1, x2)
minus(x1, x2) -> minus(x1, x2)
quot(x1, x2) -> quot(x1, x2)
s(x1) -> s(x1)
sel(x1, x2) -> sel(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳Size-Change Principle
→DP Problem 10
↳Nar
Dependency Pairs:
PROPER(zWquot(X1, X2)) -> PROPER(X2)
PROPER(zWquot(X1, X2)) -> PROPER(X1)
PROPER(quot(X1, X2)) -> PROPER(X2)
PROPER(quot(X1, X2)) -> PROPER(X1)
PROPER(minus(X1, X2)) -> PROPER(X2)
PROPER(minus(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- PROPER(zWquot(X1, X2)) -> PROPER(X2)
- PROPER(zWquot(X1, X2)) -> PROPER(X1)
- PROPER(quot(X1, X2)) -> PROPER(X2)
- PROPER(quot(X1, X2)) -> PROPER(X1)
- PROPER(minus(X1, X2)) -> PROPER(X2)
- PROPER(minus(X1, X2)) -> PROPER(X1)
- PROPER(sel(X1, X2)) -> PROPER(X2)
- PROPER(sel(X1, X2)) -> PROPER(X1)
- PROPER(s(X)) -> PROPER(X)
- PROPER(cons(X1, X2)) -> PROPER(X2)
- PROPER(cons(X1, X2)) -> PROPER(X1)
- PROPER(from(X)) -> PROPER(X)
and get the following Size-Change Graph(s): {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
from(x1) -> from(x1)
zWquot(x1, x2) -> zWquot(x1, x2)
cons(x1, x2) -> cons(x1, x2)
minus(x1, x2) -> minus(x1, x2)
quot(x1, x2) -> quot(x1, x2)
sel(x1, x2) -> sel(x1, x2)
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Narrowing Transformation
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule
TOP(mark(X)) -> TOP(proper(X))
nine new Dependency Pairs
are created:
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(minus(X1', X2'))) -> TOP(minus(proper(X1'), proper(X2')))
TOP(mark(quot(X1', X2'))) -> TOP(quot(proper(X1'), proper(X2')))
TOP(mark(zWquot(X1', X2'))) -> TOP(zWquot(proper(X1'), proper(X2')))
TOP(mark(nil)) -> TOP(ok(nil))
The transformation is resulting in one new DP problem:
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
→DP Problem 11
↳Narrowing Transformation
Dependency Pairs:
TOP(mark(nil)) -> TOP(ok(nil))
TOP(mark(zWquot(X1', X2'))) -> TOP(zWquot(proper(X1'), proper(X2')))
TOP(mark(quot(X1', X2'))) -> TOP(quot(proper(X1'), proper(X2')))
TOP(mark(minus(X1', X2'))) -> TOP(minus(proper(X1'), proper(X2')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(ok(X)) -> TOP(active(X))
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule
TOP(ok(X)) -> TOP(active(X))
21 new Dependency Pairs
are created:
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(ok(sel(0, cons(X'', XS')))) -> TOP(mark(X''))
TOP(ok(sel(s(N'), cons(X'', XS')))) -> TOP(mark(sel(N', XS')))
TOP(ok(minus(X'', 0))) -> TOP(mark(0))
TOP(ok(minus(s(X''), s(Y')))) -> TOP(mark(minus(X'', Y')))
TOP(ok(quot(0, s(Y')))) -> TOP(mark(0))
TOP(ok(quot(s(X''), s(Y')))) -> TOP(mark(s(quot(minus(X'', Y'), s(Y')))))
TOP(ok(zWquot(XS', nil))) -> TOP(mark(nil))
TOP(ok(zWquot(nil, XS'))) -> TOP(mark(nil))
TOP(ok(zWquot(cons(X'', XS'), cons(Y', YS')))) -> TOP(mark(cons(quot(X'', Y'), zWquot(XS', YS'))))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(minus(X1', X2'))) -> TOP(minus(active(X1'), X2'))
TOP(ok(minus(X1', X2'))) -> TOP(minus(X1', active(X2')))
TOP(ok(quot(X1', X2'))) -> TOP(quot(active(X1'), X2'))
TOP(ok(quot(X1', X2'))) -> TOP(quot(X1', active(X2')))
TOP(ok(zWquot(X1', X2'))) -> TOP(zWquot(active(X1'), X2'))
TOP(ok(zWquot(X1', X2'))) -> TOP(zWquot(X1', active(X2')))
The transformation is resulting in one new DP problem:
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Nar
→DP Problem 11
↳Nar
...
→DP Problem 12
↳Remaining Obligation(s)
The following remains to be proven:
Dependency Pairs:
TOP(ok(zWquot(X1', X2'))) -> TOP(zWquot(X1', active(X2')))
TOP(ok(zWquot(X1', X2'))) -> TOP(zWquot(active(X1'), X2'))
TOP(ok(quot(X1', X2'))) -> TOP(quot(X1', active(X2')))
TOP(ok(quot(X1', X2'))) -> TOP(quot(active(X1'), X2'))
TOP(ok(minus(X1', X2'))) -> TOP(minus(X1', active(X2')))
TOP(ok(minus(X1', X2'))) -> TOP(minus(active(X1'), X2'))
TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
TOP(ok(zWquot(cons(X'', XS'), cons(Y', YS')))) -> TOP(mark(cons(quot(X'', Y'), zWquot(XS', YS'))))
TOP(ok(quot(s(X''), s(Y')))) -> TOP(mark(s(quot(minus(X'', Y'), s(Y')))))
TOP(ok(minus(s(X''), s(Y')))) -> TOP(mark(minus(X'', Y')))
TOP(ok(sel(s(N'), cons(X'', XS')))) -> TOP(mark(sel(N', XS')))
TOP(ok(sel(0, cons(X'', XS')))) -> TOP(mark(X''))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(mark(quot(X1', X2'))) -> TOP(quot(proper(X1'), proper(X2')))
TOP(mark(minus(X1', X2'))) -> TOP(minus(proper(X1'), proper(X2')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(zWquot(X1', X2'))) -> TOP(zWquot(proper(X1'), proper(X2')))
Rules:
active(from(X)) -> mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(minus(X, 0)) -> mark(0)
active(minus(s(X), s(Y))) -> mark(minus(X, Y))
active(quot(0, s(Y))) -> mark(0)
active(quot(s(X), s(Y))) -> mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) -> mark(nil)
active(zWquot(nil, XS)) -> mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) -> mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(minus(X1, X2)) -> minus(active(X1), X2)
active(minus(X1, X2)) -> minus(X1, active(X2))
active(quot(X1, X2)) -> quot(active(X1), X2)
active(quot(X1, X2)) -> quot(X1, active(X2))
active(zWquot(X1, X2)) -> zWquot(active(X1), X2)
active(zWquot(X1, X2)) -> zWquot(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
minus(mark(X1), X2) -> mark(minus(X1, X2))
minus(X1, mark(X2)) -> mark(minus(X1, X2))
minus(ok(X1), ok(X2)) -> ok(minus(X1, X2))
quot(mark(X1), X2) -> mark(quot(X1, X2))
quot(X1, mark(X2)) -> mark(quot(X1, X2))
quot(ok(X1), ok(X2)) -> ok(quot(X1, X2))
zWquot(mark(X1), X2) -> mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) -> mark(zWquot(X1, X2))
zWquot(ok(X1), ok(X2)) -> ok(zWquot(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(minus(X1, X2)) -> minus(proper(X1), proper(X2))
proper(quot(X1, X2)) -> quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) -> zWquot(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The Proof could not be continued due to a Timeout.
Termination of R could not be shown.
Duration:
1:00 minutes