f(0) -> cons(0, n

f(s(0)) -> f(p(s(0)))

f(

p(s(0)) -> 0

activate(n

activate(

R

↳Dependency Pair Analysis

F(s(0)) -> F(p(s(0)))

F(s(0)) -> P(s(0))

ACTIVATE(n_{f}(X)) -> F(X)

Furthermore,

R

↳DPs

→DP Problem 1

↳Narrowing Transformation

**F(s(0)) -> F(p(s(0)))**

f(0) -> cons(0, n_{f}(s(0)))

f(s(0)) -> f(p(s(0)))

f(X) -> n_{f}(X)

p(s(0)) -> 0

activate(n_{f}(X)) -> f(X)

activate(X) ->X

On this DP problem, a Narrowing SCC transformation can be performed.

As a result of transforming the rule

one new Dependency Pair is created:

F(s(0)) -> F(p(s(0)))

F(s(0)) -> F(0)

The transformation is resulting in no new DP problems.

Duration:

0:00 minutes