R
↳Dependency Pair Analysis
F(s(0)) -> F(p(s(0)))
F(s(0)) -> P(s(0))
ACTIVATE(nf(X)) -> F(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
F(s(0)) -> F(p(s(0)))
f(0) -> cons(0, nf(s(0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
activate(nf(X)) -> f(X)
activate(X) -> X
F(s(0)) -> F(p(s(0)))
f(0) -> cons(0, nf(s(0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
activate(nf(X)) -> f(X)
activate(X) -> X
POL(n__f(x1)) = 0 POL(activate(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = 0 POL(s(x1)) = 1 POL(f(x1)) = 0 POL(F(x1)) = x1 POL(p(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
f(0) -> cons(0, nf(s(0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
activate(nf(X)) -> f(X)
activate(X) -> X