Term Rewriting System R:
[X]
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X

Termination of R to be shown.



   R
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

f(0) -> cons(0, nf(ns(n0)))
f(X) -> nf(X)

where the Polynomial interpretation:
  POL(n__f(x1))=  1 + x1  
  POL(activate(x1))=  2·x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(n__s(x1))=  x1  
  POL(s(x1))=  x1  
  POL(n__0)=  0  
  POL(f(x1))=  2 + x1  
  POL(p(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

0 -> n0

where the Polynomial interpretation:
  POL(activate(x1))=  2·x1  
  POL(n__f(x1))=  x1  
  POL(0)=  2  
  POL(n__s(x1))=  x1  
  POL(s(x1))=  x1  
  POL(n__0)=  1  
  POL(f(x1))=  x1  
  POL(p(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

s(X) -> ns(X)
p(s(0)) -> 0

where the Polynomial interpretation:
  POL(activate(x1))=  2·x1  
  POL(n__f(x1))=  x1  
  POL(0)=  0  
  POL(n__s(x1))=  1 + x1  
  POL(s(x1))=  2 + x1  
  POL(n__0)=  0  
  POL(f(x1))=  x1  
  POL(p(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS4
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

activate(ns(X)) -> s(activate(X))

where the Polynomial interpretation:
  POL(activate(x1))=  x1  
  POL(n__f(x1))=  x1  
  POL(0)=  0  
  POL(n__s(x1))=  1 + x1  
  POL(s(x1))=  x1  
  POL(n__0)=  0  
  POL(f(x1))=  x1  
  POL(p(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS5
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

activate(n0) -> 0
activate(X) -> X

where the Polynomial interpretation:
  POL(activate(x1))=  1 + x1  
  POL(n__f(x1))=  x1  
  POL(0)=  0  
  POL(s(x1))=  x1  
  POL(n__0)=  0  
  POL(f(x1))=  x1  
  POL(p(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS6
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

activate(nf(X)) -> f(activate(X))

where the Polynomial interpretation:
  POL(activate(x1))=  x1  
  POL(n__f(x1))=  1 + x1  
  POL(0)=  0  
  POL(s(x1))=  x1  
  POL(f(x1))=  x1  
  POL(p(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS7
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS8
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(0)) -> F(p(s(0)))

R contains no SCCs.

Termination of R successfully shown.
Duration:
0:00 minutes