R
↳Dependency Pair Analysis
F(s(0)) -> F(p(s(0)))
F(s(0)) -> P(s(0))
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(n0) -> 0'
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
→DP Problem 2
↳Polo
F(s(0)) -> F(p(s(0)))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
three new Dependency Pairs are created:
F(s(0)) -> F(p(s(0)))
F(s(0)) -> F(0)
F(s(0)) -> F(p(ns(0)))
F(s(0)) -> F(p(s(n0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Narrowing Transformation
→DP Problem 2
↳Polo
F(s(0)) -> F(p(s(n0)))
F(s(0)) -> F(p(ns(0)))
F(s(0)) -> F(0)
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
one new Dependency Pair is created:
F(s(0)) -> F(0)
F(s(0)) -> F(n0)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Nar
...
→DP Problem 4
↳Narrowing Transformation
→DP Problem 2
↳Polo
F(s(0)) -> F(p(ns(0)))
F(s(0)) -> F(p(s(n0)))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
one new Dependency Pair is created:
F(s(0)) -> F(p(ns(0)))
F(s(0)) -> F(p(ns(n0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Nar
...
→DP Problem 5
↳Narrowing Transformation
→DP Problem 2
↳Polo
F(s(0)) -> F(p(ns(n0)))
F(s(0)) -> F(p(s(n0)))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
one new Dependency Pair is created:
F(s(0)) -> F(p(s(n0)))
F(s(0)) -> F(p(ns(n0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Nar
...
→DP Problem 6
↳Narrowing Transformation
→DP Problem 2
↳Polo
F(s(0)) -> F(p(ns(n0)))
F(s(0)) -> F(p(ns(n0)))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
no new Dependency Pairs are created.
F(s(0)) -> F(p(ns(n0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
→DP Problem 2
↳Polo
F(s(0)) -> F(p(ns(n0)))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
no new Dependency Pairs are created.
F(s(0)) -> F(p(ns(n0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polynomial Ordering
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
ACTIVATE(ns(X)) -> ACTIVATE(X)
POL(n__f(x1)) = x1 POL(n__s(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
→DP Problem 8
↳Polynomial Ordering
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
ACTIVATE(nf(X)) -> ACTIVATE(X)
POL(n__f(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
→DP Problem 8
↳Polo
...
→DP Problem 9
↳Dependency Graph
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X