R
↳Dependency Pair Analysis
F(s(0)) -> F(p(s(0)))
F(s(0)) -> P(s(0))
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(n0) -> 0'
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
F(s(0)) -> F(p(s(0)))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
F(s(0)) -> F(p(s(0)))
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
{activate, 0, p} > {ns, f, s} > nf
{activate, 0, p} > {ns, f, s} > cons
{activate, 0, p} > n0
F(x1) -> F(x1)
s(x1) -> s(x1)
p(x1) -> p
0 -> 0
ns(x1) -> ns(x1)
f(x1) -> f(x1)
cons(x1, x2) -> cons(x1, x2)
nf(x1) -> nf(x1)
activate(x1) -> activate(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
{activate, 0} > f > nf
{activate, 0} > f > cons
{activate, 0} > n0
{activate, 0} > s > ns
ACTIVATE(x1) -> ACTIVATE(x1)
ns(x1) -> ns(x1)
nf(x1) -> nf(x1)
f(x1) -> f(x1)
cons(x1, x2) -> cons(x1, x2)
0 -> 0
s(x1) -> s(x1)
p(x1) -> x1
activate(x1) -> activate(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X