Term Rewriting System R:
[X, Y, X1, X2]
af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

AF(g(X), Y) -> AF(mark(X), f(g(X), Y))
AF(g(X), Y) -> MARK(X)
MARK(f(X1, X2)) -> AF(mark(X1), X2)
MARK(f(X1, X2)) -> MARK(X1)
MARK(g(X)) -> MARK(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

MARK(g(X)) -> MARK(X)
MARK(f(X1, X2)) -> MARK(X1)
MARK(f(X1, X2)) -> AF(mark(X1), X2)
AF(g(X), Y) -> MARK(X)
AF(g(X), Y) -> AF(mark(X), f(g(X), Y))


Rules:


af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))





The following dependency pairs can be strictly oriented:

MARK(f(X1, X2)) -> MARK(X1)
MARK(f(X1, X2)) -> AF(mark(X1), X2)


Additionally, the following rules can be oriented:

af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MARK(x1))=  x1  
  POL(g(x1))=  x1  
  POL(A__F(x1, x2))=  x1  
  POL(mark(x1))=  x1  
  POL(f(x1, x2))=  1 + x1  
  POL(a__f(x1, x2))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Dependency Graph


Dependency Pairs:

MARK(g(X)) -> MARK(X)
AF(g(X), Y) -> MARK(X)
AF(g(X), Y) -> AF(mark(X), f(g(X), Y))


Rules:


af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))





Using the Dependency Graph the DP problem was split into 2 DP problems.


   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
DGraph
             ...
               →DP Problem 3
Polynomial Ordering


Dependency Pair:

MARK(g(X)) -> MARK(X)


Rules:


af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))





The following dependency pair can be strictly oriented:

MARK(g(X)) -> MARK(X)


Additionally, the following rules can be oriented:

af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MARK(x1))=  x1  
  POL(g(x1))=  1 + x1  
  POL(mark(x1))=  x1  
  POL(f(x1, x2))=  0  
  POL(a__f(x1, x2))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
DGraph
             ...
               →DP Problem 5
Dependency Graph


Dependency Pair:


Rules:


af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
DGraph
             ...
               →DP Problem 4
Polynomial Ordering


Dependency Pair:

AF(g(X), Y) -> AF(mark(X), f(g(X), Y))


Rules:


af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))





The following dependency pair can be strictly oriented:

AF(g(X), Y) -> AF(mark(X), f(g(X), Y))


Additionally, the following rules can be oriented:

af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  1 + x1  
  POL(A__F(x1, x2))=  x1  
  POL(mark(x1))=  x1  
  POL(f(x1, x2))=  0  
  POL(a__f(x1, x2))=  0  

resulting in one new DP problem.


Termination of R successfully shown.
Duration:
0:00 minutes