R
↳Dependency Pair Analysis
ACTIVE(f(g(X), Y)) -> F(X, f(g(X), Y))
ACTIVE(f(X1, X2)) -> F(active(X1), X2)
ACTIVE(f(X1, X2)) -> ACTIVE(X1)
ACTIVE(g(X)) -> G(active(X))
ACTIVE(g(X)) -> ACTIVE(X)
F(mark(X1), X2) -> F(X1, X2)
F(ok(X1), ok(X2)) -> F(X1, X2)
G(mark(X)) -> G(X)
G(ok(X)) -> G(X)
PROPER(f(X1, X2)) -> F(proper(X1), proper(X2))
PROPER(f(X1, X2)) -> PROPER(X1)
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
F(ok(X1), ok(X2)) -> F(X1, X2)
F(mark(X1), X2) -> F(X1, X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
F(ok(X1), ok(X2)) -> F(X1, X2)
POL(mark(x1)) = 0 POL(ok(x1)) = 1 + x1 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
F(mark(X1), X2) -> F(X1, X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
F(mark(X1), X2) -> F(X1, X2)
POL(mark(x1)) = 1 + x1 POL(F(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 6
↳Polo
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
G(ok(X)) -> G(X)
G(mark(X)) -> G(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
G(ok(X)) -> G(X)
POL(G(x1)) = x1 POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
G(mark(X)) -> G(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
G(mark(X)) -> G(X)
POL(G(x1)) = x1 POL(mark(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Polo
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
ACTIVE(g(X)) -> ACTIVE(X)
ACTIVE(f(X1, X2)) -> ACTIVE(X1)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(g(X)) -> ACTIVE(X)
POL(ACTIVE(x1)) = x1 POL(g(x1)) = 1 + x1 POL(f(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
ACTIVE(f(X1, X2)) -> ACTIVE(X1)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(f(X1, X2)) -> ACTIVE(X1)
POL(ACTIVE(x1)) = x1 POL(f(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 11
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Nar
PROPER(g(X)) -> PROPER(X)
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(f(X1, X2)) -> PROPER(X1)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(g(X)) -> PROPER(X)
POL(g(x1)) = 1 + x1 POL(PROPER(x1)) = x1 POL(f(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 12
↳Polynomial Ordering
→DP Problem 5
↳Nar
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(f(X1, X2)) -> PROPER(X1)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(f(X1, X2)) -> PROPER(X1)
POL(PROPER(x1)) = x1 POL(f(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 12
↳Polo
...
→DP Problem 13
↳Dependency Graph
→DP Problem 5
↳Nar
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
two new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(f(X1', X2'))) -> TOP(f(proper(X1'), proper(X2')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
→DP Problem 14
↳Narrowing Transformation
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(f(X1', X2'))) -> TOP(f(proper(X1'), proper(X2')))
TOP(ok(X)) -> TOP(active(X))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
three new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(f(g(X''), Y'))) -> TOP(mark(f(X'', f(g(X''), Y'))))
TOP(ok(f(X1', X2'))) -> TOP(f(active(X1'), X2'))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 15
↳Narrowing Transformation
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(f(X1', X2'))) -> TOP(f(active(X1'), X2'))
TOP(ok(f(g(X''), Y'))) -> TOP(mark(f(X'', f(g(X''), Y'))))
TOP(mark(f(X1', X2'))) -> TOP(f(proper(X1'), proper(X2')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
four new Dependency Pairs are created:
TOP(mark(f(X1', X2'))) -> TOP(f(proper(X1'), proper(X2')))
TOP(mark(f(f(X1'', X2''), X2'))) -> TOP(f(f(proper(X1''), proper(X2'')), proper(X2')))
TOP(mark(f(g(X'), X2'))) -> TOP(f(g(proper(X')), proper(X2')))
TOP(mark(f(X1', f(X1'', X2'')))) -> TOP(f(proper(X1'), f(proper(X1''), proper(X2''))))
TOP(mark(f(X1', g(X')))) -> TOP(f(proper(X1'), g(proper(X'))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 16
↳Narrowing Transformation
TOP(mark(f(X1', g(X')))) -> TOP(f(proper(X1'), g(proper(X'))))
TOP(mark(f(X1', f(X1'', X2'')))) -> TOP(f(proper(X1'), f(proper(X1''), proper(X2''))))
TOP(mark(f(g(X'), X2'))) -> TOP(f(g(proper(X')), proper(X2')))
TOP(ok(f(X1', X2'))) -> TOP(f(active(X1'), X2'))
TOP(mark(f(f(X1'', X2''), X2'))) -> TOP(f(f(proper(X1''), proper(X2'')), proper(X2')))
TOP(ok(f(g(X''), Y'))) -> TOP(mark(f(X'', f(g(X''), Y'))))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
two new Dependency Pairs are created:
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(g(f(X1', X2')))) -> TOP(g(f(proper(X1'), proper(X2'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 17
↳Narrowing Transformation
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X1', X2')))) -> TOP(g(f(proper(X1'), proper(X2'))))
TOP(mark(f(X1', f(X1'', X2'')))) -> TOP(f(proper(X1'), f(proper(X1''), proper(X2''))))
TOP(mark(f(g(X'), X2'))) -> TOP(f(g(proper(X')), proper(X2')))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(f(X1', X2'))) -> TOP(f(active(X1'), X2'))
TOP(mark(f(f(X1'', X2''), X2'))) -> TOP(f(f(proper(X1''), proper(X2'')), proper(X2')))
TOP(ok(f(g(X''), Y'))) -> TOP(mark(f(X'', f(g(X''), Y'))))
TOP(mark(f(X1', g(X')))) -> TOP(f(proper(X1'), g(proper(X'))))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
three new Dependency Pairs are created:
TOP(ok(f(X1', X2'))) -> TOP(f(active(X1'), X2'))
TOP(ok(f(f(g(X'), Y'), X2'))) -> TOP(f(mark(f(X', f(g(X'), Y'))), X2'))
TOP(ok(f(f(X1'', X2''), X2'))) -> TOP(f(f(active(X1''), X2''), X2'))
TOP(ok(f(g(X'), X2'))) -> TOP(f(g(active(X')), X2'))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 18
↳Narrowing Transformation
TOP(ok(f(g(X'), X2'))) -> TOP(f(g(active(X')), X2'))
TOP(ok(f(f(X1'', X2''), X2'))) -> TOP(f(f(active(X1''), X2''), X2'))
TOP(ok(f(f(g(X'), Y'), X2'))) -> TOP(f(mark(f(X', f(g(X'), Y'))), X2'))
TOP(mark(g(f(X1', X2')))) -> TOP(g(f(proper(X1'), proper(X2'))))
TOP(mark(f(X1', g(X')))) -> TOP(f(proper(X1'), g(proper(X'))))
TOP(mark(f(X1', f(X1'', X2'')))) -> TOP(f(proper(X1'), f(proper(X1''), proper(X2''))))
TOP(mark(f(g(X'), X2'))) -> TOP(f(g(proper(X')), proper(X2')))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(mark(f(f(X1'', X2''), X2'))) -> TOP(f(f(proper(X1''), proper(X2'')), proper(X2')))
TOP(ok(f(g(X''), Y'))) -> TOP(mark(f(X'', f(g(X''), Y'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
three new Dependency Pairs are created:
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(g(f(g(X'), Y')))) -> TOP(g(mark(f(X', f(g(X'), Y')))))
TOP(ok(g(f(X1', X2')))) -> TOP(g(f(active(X1'), X2')))
TOP(ok(g(g(X')))) -> TOP(g(g(active(X'))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 19
↳Polynomial Ordering
TOP(ok(g(g(X')))) -> TOP(g(g(active(X'))))
TOP(ok(g(f(X1', X2')))) -> TOP(g(f(active(X1'), X2')))
TOP(ok(g(f(g(X'), Y')))) -> TOP(g(mark(f(X', f(g(X'), Y')))))
TOP(ok(f(f(X1'', X2''), X2'))) -> TOP(f(f(active(X1''), X2''), X2'))
TOP(ok(f(f(g(X'), Y'), X2'))) -> TOP(f(mark(f(X', f(g(X'), Y'))), X2'))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X1', X2')))) -> TOP(g(f(proper(X1'), proper(X2'))))
TOP(mark(f(X1', g(X')))) -> TOP(f(proper(X1'), g(proper(X'))))
TOP(mark(f(X1', f(X1'', X2'')))) -> TOP(f(proper(X1'), f(proper(X1''), proper(X2''))))
TOP(mark(f(g(X'), X2'))) -> TOP(f(g(proper(X')), proper(X2')))
TOP(mark(f(f(X1'', X2''), X2'))) -> TOP(f(f(proper(X1''), proper(X2'')), proper(X2')))
TOP(ok(f(g(X''), Y'))) -> TOP(mark(f(X'', f(g(X''), Y'))))
TOP(ok(f(g(X'), X2'))) -> TOP(f(g(active(X')), X2'))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
TOP(ok(g(g(X')))) -> TOP(g(g(active(X'))))
TOP(ok(g(f(X1', X2')))) -> TOP(g(f(active(X1'), X2')))
TOP(ok(g(f(g(X'), Y')))) -> TOP(g(mark(f(X', f(g(X'), Y')))))
TOP(ok(f(f(X1'', X2''), X2'))) -> TOP(f(f(active(X1''), X2''), X2'))
TOP(ok(f(f(g(X'), Y'), X2'))) -> TOP(f(mark(f(X', f(g(X'), Y'))), X2'))
TOP(ok(f(g(X''), Y'))) -> TOP(mark(f(X'', f(g(X''), Y'))))
TOP(ok(f(g(X'), X2'))) -> TOP(f(g(active(X')), X2'))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
POL(active(x1)) = x1 POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 1 + x1 POL(TOP(x1)) = x1 POL(f(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 20
↳Polynomial Ordering
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X1', X2')))) -> TOP(g(f(proper(X1'), proper(X2'))))
TOP(mark(f(X1', g(X')))) -> TOP(f(proper(X1'), g(proper(X'))))
TOP(mark(f(X1', f(X1'', X2'')))) -> TOP(f(proper(X1'), f(proper(X1''), proper(X2''))))
TOP(mark(f(g(X'), X2'))) -> TOP(f(g(proper(X')), proper(X2')))
TOP(mark(f(f(X1'', X2''), X2'))) -> TOP(f(f(proper(X1''), proper(X2'')), proper(X2')))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X1', X2')))) -> TOP(g(f(proper(X1'), proper(X2'))))
TOP(mark(f(X1', g(X')))) -> TOP(f(proper(X1'), g(proper(X'))))
TOP(mark(f(X1', f(X1'', X2'')))) -> TOP(f(proper(X1'), f(proper(X1''), proper(X2''))))
TOP(mark(f(g(X'), X2'))) -> TOP(f(g(proper(X')), proper(X2')))
TOP(mark(f(f(X1'', X2''), X2'))) -> TOP(f(f(proper(X1''), proper(X2'')), proper(X2')))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(mark(x1)) = 1 POL(ok(x1)) = 0 POL(TOP(x1)) = x1 POL(f(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 21
↳Dependency Graph
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))