R
↳Dependency Pair Analysis
ACTIVE(f(g(X), Y)) -> F(X, f(g(X), Y))
ACTIVE(f(X1, X2)) -> F(active(X1), X2)
ACTIVE(f(X1, X2)) -> ACTIVE(X1)
ACTIVE(g(X)) -> G(active(X))
ACTIVE(g(X)) -> ACTIVE(X)
F(mark(X1), X2) -> F(X1, X2)
F(ok(X1), ok(X2)) -> F(X1, X2)
G(mark(X)) -> G(X)
G(ok(X)) -> G(X)
PROPER(f(X1, X2)) -> F(proper(X1), proper(X2))
PROPER(f(X1, X2)) -> PROPER(X1)
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
F(ok(X1), ok(X2)) -> F(X1, X2)
F(mark(X1), X2) -> F(X1, X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
F(ok(X1), ok(X2)) -> F(X1, X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = x1 POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 1 + x1 POL(f(x1, x2)) = x2 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
F(mark(X1), X2) -> F(X1, X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
F(mark(X1), X2) -> F(X1, X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = 1 + x1 POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(mark(x1)) = 1 + x1 POL(ok(x1)) = 0 POL(f(x1, x2)) = x1 POL(F(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 6
↳Polo
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
G(ok(X)) -> G(X)
G(mark(X)) -> G(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
G(mark(X)) -> G(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = 1 + x1 POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(G(x1)) = x1 POL(mark(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(f(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
G(ok(X)) -> G(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
G(ok(X)) -> G(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = x1 POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(G(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 1 + x1 POL(f(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Polo
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
ACTIVE(g(X)) -> ACTIVE(X)
ACTIVE(f(X1, X2)) -> ACTIVE(X1)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(f(X1, X2)) -> ACTIVE(X1)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = x1 POL(proper(x1)) = x1 POL(ACTIVE(x1)) = x1 POL(g(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0 POL(f(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
ACTIVE(g(X)) -> ACTIVE(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
ACTIVE(g(X)) -> ACTIVE(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = x1 POL(proper(x1)) = x1 POL(ACTIVE(x1)) = x1 POL(g(x1)) = 1 + x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0 POL(f(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 11
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Polo
PROPER(g(X)) -> PROPER(X)
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(f(X1, X2)) -> PROPER(X1)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(f(X1, X2)) -> PROPER(X1)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = x1 POL(proper(x1)) = x1 POL(g(x1)) = x1 POL(PROPER(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0 POL(f(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 12
↳Polynomial Ordering
→DP Problem 5
↳Polo
PROPER(g(X)) -> PROPER(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
PROPER(g(X)) -> PROPER(X)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = x1 POL(proper(x1)) = x1 POL(g(x1)) = 1 + x1 POL(PROPER(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0 POL(f(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 12
↳Polo
...
→DP Problem 13
↳Dependency Graph
→DP Problem 5
↳Polo
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polynomial Ordering
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
TOP(ok(X)) -> TOP(active(X))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = x1 POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 1 + x1 POL(TOP(x1)) = x1 POL(f(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 14
↳Polynomial Ordering
TOP(mark(X)) -> TOP(proper(X))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(top(x1)) = 0 POL(active(x1)) = 1 POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(mark(x1)) = 1 POL(ok(x1)) = 0 POL(TOP(x1)) = x1 POL(f(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 14
↳Polo
...
→DP Problem 15
↳Dependency Graph
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))