R
↳Dependency Pair Analysis
MINUS(n0, Y) -> 0'
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
MINUS(ns(X), ns(Y)) -> ACTIVATE(X)
MINUS(ns(X), ns(Y)) -> ACTIVATE(Y)
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
GEQ(ns(X), ns(Y)) -> ACTIVATE(X)
GEQ(ns(X), ns(Y)) -> ACTIVATE(Y)
DIV(s(X), ns(Y)) -> IF(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
DIV(s(X), ns(Y)) -> GEQ(X, activate(Y))
DIV(s(X), ns(Y)) -> ACTIVATE(Y)
DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))
DIV(s(X), ns(Y)) -> MINUS(X, activate(Y))
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
ACTIVATE(n0) -> 0'
ACTIVATE(ns(X)) -> S(X)
R
↳DPs
→DP Problem 1
↳Modular Removal of Rules
→DP Problem 2
↳MRR
→DP Problem 3
↳Neg POLO
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
POL(activate(x1)) = x1 POL(0) = 0 POL(MINUS(x1, x2)) = x1 + x2 POL(n__s(x1)) = x1 POL(n__0) = 0 POL(s(x1)) = x1
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 4
↳Modular Removal of Rules
→DP Problem 2
↳MRR
→DP Problem 3
↳Neg POLO
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
POL(activate(x1)) = x1 POL(0) = 0 POL(MINUS(x1, x2)) = 1 + x1 + x2 POL(n__s(x1)) = 1 + x1 POL(n__0) = 0 POL(s(x1)) = 1 + x1
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Modular Removal of Rules
→DP Problem 3
↳Neg POLO
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
POL(GEQ(x1, x2)) = x1 + x2 POL(activate(x1)) = x1 POL(0) = 0 POL(n__s(x1)) = x1 POL(n__0) = 0 POL(s(x1)) = x1
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 5
↳Modular Removal of Rules
→DP Problem 3
↳Neg POLO
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
POL(GEQ(x1, x2)) = 1 + x1 + x2 POL(activate(x1)) = x1 POL(0) = 0 POL(n__s(x1)) = 1 + x1 POL(n__0) = 0 POL(s(x1)) = 1 + x1
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳Negative Polynomial Order
DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
POL( DIV(x1, x2) ) = x1
POL( s(x1) ) = 1
POL( minus(x1, x2) ) = 0
POL( 0 ) = 0
POL( activate(x1) ) = x1
POL( ns(x1) ) = 1
POL( n0 ) = 0
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳Neg POLO
→DP Problem 6
↳Dependency Graph
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X