Term Rewriting System R:
[Y, X]
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X

Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

MINUS(n0, Y) -> 0'
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
MINUS(ns(X), ns(Y)) -> ACTIVATE(X)
MINUS(ns(X), ns(Y)) -> ACTIVATE(Y)
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
GEQ(ns(X), ns(Y)) -> ACTIVATE(X)
GEQ(ns(X), ns(Y)) -> ACTIVATE(Y)
DIV(s(X), ns(Y)) -> IF(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
DIV(s(X), ns(Y)) -> GEQ(X, activate(Y))
DIV(s(X), ns(Y)) -> ACTIVATE(Y)
DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))
DIV(s(X), ns(Y)) -> MINUS(X, activate(Y))
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
ACTIVATE(n0) -> 0'
ACTIVATE(ns(X)) -> S(X)

Furthermore, R contains three SCCs.

R
DPs
→DP Problem 1
Polynomial Ordering
→DP Problem 2
Polo
→DP Problem 3
Polo

Dependency Pair:

MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))

Rules:

minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X

The following dependency pair can be strictly oriented:

MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))

Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(activate(x1)) =  x1 POL(0) =  0 POL(MINUS(x1, x2)) =  1 + x1 POL(n__s(x1)) =  1 + x1 POL(n__0) =  0 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 4
Dependency Graph
→DP Problem 2
Polo
→DP Problem 3
Polo

Dependency Pair:

Rules:

minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polynomial Ordering
→DP Problem 3
Polo

Dependency Pair:

GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))

Rules:

minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X

The following dependency pair can be strictly oriented:

GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))

Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(GEQ(x1, x2)) =  1 + x1 POL(activate(x1)) =  x1 POL(0) =  0 POL(n__s(x1)) =  1 + x1 POL(n__0) =  0 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 5
Dependency Graph
→DP Problem 3
Polo

Dependency Pair:

Rules:

minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polynomial Ordering

Dependency Pair:

DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))

Rules:

minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X

The following dependency pair can be strictly oriented:

DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))

Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
0 -> n0

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(activate(x1)) =  0 POL(0) =  0 POL(DIV(x1, x2)) =  x1 POL(minus(x1, x2)) =  0 POL(n__s(x1)) =  0 POL(n__0) =  0 POL(s(x1)) =  1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 6
Dependency Graph

Dependency Pair:

Rules:

minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes