R
↳Dependency Pair Analysis
MINUS(n0, Y) -> 0'
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
MINUS(ns(X), ns(Y)) -> ACTIVATE(X)
MINUS(ns(X), ns(Y)) -> ACTIVATE(Y)
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
GEQ(ns(X), ns(Y)) -> ACTIVATE(X)
GEQ(ns(X), ns(Y)) -> ACTIVATE(Y)
DIV(s(X), ns(Y)) -> IF(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
DIV(s(X), ns(Y)) -> GEQ(X, activate(Y))
DIV(s(X), ns(Y)) -> ACTIVATE(Y)
DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))
DIV(s(X), ns(Y)) -> MINUS(X, activate(Y))
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
ACTIVATE(n0) -> 0'
ACTIVATE(ns(X)) -> S(X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
{ns, s} > {activate, 0} > n0
MINUS(x1, x2) -> MINUS(x1, x2)
ns(x1) -> ns(x1)
activate(x1) -> activate(x1)
0 -> 0
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
0 -> n0
s(X) -> ns(X)
{ns, s} > {activate, 0} > n0
GEQ(x1, x2) -> GEQ(x1, x2)
ns(x1) -> ns(x1)
activate(x1) -> activate(x1)
0 -> 0
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳AFS
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
DIV(s(X), ns(Y)) -> DIV(minus(X, activate(Y)), ns(activate(Y)))
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
0 -> n0
s(X) -> ns(X)
DIV > {ns, s} > activate
{0, n0}
DIV(x1, x2) -> DIV(x1, x2)
s(x1) -> s(x1)
ns(x1) -> ns(x1)
minus(x1, x2) -> x1
activate(x1) -> activate(x1)
0 -> 0
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 6
↳Dependency Graph
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(div(minus(X, activate(Y)), ns(activate(Y)))), n0)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(X) -> X