R
↳Dependency Pair Analysis
AMINUS(s(X), s(Y)) -> AMINUS(X, Y)
AGEQ(s(X), s(Y)) -> AGEQ(X, Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
ADIV(s(X), s(Y)) -> AGEQ(X, Y)
AIF(true, X, Y) -> MARK(X)
AIF(false, X, Y) -> MARK(Y)
MARK(minus(X1, X2)) -> AMINUS(X1, X2)
MARK(geq(X1, X2)) -> AGEQ(X1, X2)
MARK(div(X1, X2)) -> ADIV(mark(X1), X2)
MARK(div(X1, X2)) -> MARK(X1)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
AMINUS(s(X), s(Y)) -> AMINUS(X, Y)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
AMINUS(s(X), s(Y)) -> AMINUS(X, Y)
POL(A__MINUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
AGEQ(s(X), s(Y)) -> AGEQ(X, Y)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
AGEQ(s(X), s(Y)) -> AGEQ(X, Y)
POL(A__GEQ(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
AIF(false, X, Y) -> MARK(Y)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(div(X1, X2)) -> MARK(X1)
MARK(div(X1, X2)) -> ADIV(mark(X1), X2)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(s(X)) -> MARK(X)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = x1 POL(a__div(x1, x2)) = x1 POL(if(x1, x2, x3)) = x1 + x2 + x3 POL(0) = 0 POL(a__if(x1, x2, x3)) = x1 + x2 + x3 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = 1 + x1 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = x1 POL(A__DIV(x1, x2)) = x1 POL(A__IF(x1, x2, x3)) = x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Polynomial Ordering
MARK(if(X1, X2, X3)) -> MARK(X1)
AIF(false, X, Y) -> MARK(Y)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(div(X1, X2)) -> MARK(X1)
MARK(div(X1, X2)) -> ADIV(mark(X1), X2)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = 0 POL(a__div(x1, x2)) = 0 POL(if(x1, x2, x3)) = 1 + x1 + x2 + x3 POL(0) = 0 POL(a__if(x1, x2, x3)) = 0 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = 0 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = x1 POL(A__DIV(x1, x2)) = 0 POL(A__IF(x1, x2, x3)) = x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Polo
...
→DP Problem 7
↳Polynomial Ordering
AIF(false, X, Y) -> MARK(Y)
MARK(div(X1, X2)) -> MARK(X1)
MARK(div(X1, X2)) -> ADIV(mark(X1), X2)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
AIF(false, X, Y) -> MARK(Y)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = 0 POL(a__div(x1, x2)) = 0 POL(if(x1, x2, x3)) = 0 POL(0) = 0 POL(a__if(x1, x2, x3)) = 0 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = 0 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = 1 + x1 POL(A__DIV(x1, x2)) = 1 POL(A__IF(x1, x2, x3)) = 1 + x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Polo
...
→DP Problem 8
↳Dependency Graph
MARK(div(X1, X2)) -> ADIV(mark(X1), X2)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false