R
↳Dependency Pair Analysis
AMINUS(s(X), s(Y)) -> AMINUS(X, Y)
AGEQ(s(X), s(Y)) -> AGEQ(X, Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
ADIV(s(X), s(Y)) -> AGEQ(X, Y)
AIF(true, X, Y) -> MARK(X)
AIF(false, X, Y) -> MARK(Y)
MARK(minus(X1, X2)) -> AMINUS(X1, X2)
MARK(geq(X1, X2)) -> AGEQ(X1, X2)
MARK(div(X1, X2)) -> ADIV(mark(X1), X2)
MARK(div(X1, X2)) -> MARK(X1)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
AMINUS(s(X), s(Y)) -> AMINUS(X, Y)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
AMINUS(s(X), s(Y)) -> AMINUS(X, Y)
POL(A__MINUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Nar
AGEQ(s(X), s(Y)) -> AGEQ(X, Y)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
AGEQ(s(X), s(Y)) -> AGEQ(X, Y)
POL(A__GEQ(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Nar
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Narrowing Transformation
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
AIF(false, X, Y) -> MARK(Y)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(div(X1, X2)) -> MARK(X1)
MARK(div(X1, X2)) -> ADIV(mark(X1), X2)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
eight new Dependency Pairs are created:
MARK(div(X1, X2)) -> ADIV(mark(X1), X2)
MARK(div(minus(X1'', X2''), X2)) -> ADIV(aminus(X1'', X2''), X2)
MARK(div(geq(X1'', X2''), X2)) -> ADIV(ageq(X1'', X2''), X2)
MARK(div(div(X1'', X2''), X2)) -> ADIV(adiv(mark(X1''), X2''), X2)
MARK(div(if(X1'', X2'', X3'), X2)) -> ADIV(aif(mark(X1''), X2'', X3'), X2)
MARK(div(0, X2)) -> ADIV(0, X2)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(div(true, X2)) -> ADIV(true, X2)
MARK(div(false, X2)) -> ADIV(false, X2)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Narrowing Transformation
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(div(if(X1'', X2'', X3'), X2)) -> ADIV(aif(mark(X1''), X2'', X3'), X2)
MARK(div(div(X1'', X2''), X2)) -> ADIV(adiv(mark(X1''), X2''), X2)
MARK(div(geq(X1'', X2''), X2)) -> ADIV(ageq(X1'', X2''), X2)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(minus(X1'', X2''), X2)) -> ADIV(aminus(X1'', X2''), X2)
MARK(if(X1, X2, X3)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(div(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
eight new Dependency Pairs are created:
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(if(minus(X1'', X2''), X2, X3)) -> AIF(aminus(X1'', X2''), X2, X3)
MARK(if(geq(X1'', X2''), X2, X3)) -> AIF(ageq(X1'', X2''), X2, X3)
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(0, X2, X3)) -> AIF(0, X2, X3)
MARK(if(s(X'), X2, X3)) -> AIF(s(mark(X')), X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
MARK(if(geq(X1'', X2''), X2, X3)) -> AIF(ageq(X1'', X2''), X2, X3)
AIF(false, X, Y) -> MARK(Y)
MARK(if(minus(X1'', X2''), X2, X3)) -> AIF(aminus(X1'', X2''), X2, X3)
MARK(div(if(X1'', X2'', X3'), X2)) -> ADIV(aif(mark(X1''), X2'', X3'), X2)
MARK(div(div(X1'', X2''), X2)) -> ADIV(adiv(mark(X1''), X2''), X2)
MARK(div(geq(X1'', X2''), X2)) -> ADIV(ageq(X1'', X2''), X2)
MARK(div(minus(X1'', X2''), X2)) -> ADIV(aminus(X1'', X2''), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
three new Dependency Pairs are created:
MARK(div(minus(X1'', X2''), X2)) -> ADIV(aminus(X1'', X2''), X2)
MARK(div(minus(0, X2'''), X2)) -> ADIV(0, X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(div(minus(X1''', X2'''), X2)) -> ADIV(minus(X1''', X2'''), X2)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Narrowing Transformation
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
MARK(if(geq(X1'', X2''), X2, X3)) -> AIF(ageq(X1'', X2''), X2, X3)
MARK(if(minus(X1'', X2''), X2, X3)) -> AIF(aminus(X1'', X2''), X2, X3)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(div(if(X1'', X2'', X3'), X2)) -> ADIV(aif(mark(X1''), X2'', X3'), X2)
MARK(div(div(X1'', X2''), X2)) -> ADIV(adiv(mark(X1''), X2''), X2)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(geq(X1'', X2''), X2)) -> ADIV(ageq(X1'', X2''), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(false, X, Y) -> MARK(Y)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
four new Dependency Pairs are created:
MARK(div(geq(X1'', X2''), X2)) -> ADIV(ageq(X1'', X2''), X2)
MARK(div(geq(X1''', 0), X2)) -> ADIV(true, X2)
MARK(div(geq(0, s(Y')), X2)) -> ADIV(false, X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(div(geq(X1''', X2'''), X2)) -> ADIV(geq(X1''', X2'''), X2)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Narrowing Transformation
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
MARK(if(geq(X1'', X2''), X2, X3)) -> AIF(ageq(X1'', X2''), X2, X3)
AIF(false, X, Y) -> MARK(Y)
MARK(if(minus(X1'', X2''), X2, X3)) -> AIF(aminus(X1'', X2''), X2, X3)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(div(if(X1'', X2'', X3'), X2)) -> ADIV(aif(mark(X1''), X2'', X3'), X2)
MARK(div(div(X1'', X2''), X2)) -> ADIV(adiv(mark(X1''), X2''), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
nine new Dependency Pairs are created:
MARK(div(div(X1'', X2''), X2)) -> ADIV(adiv(mark(X1''), X2''), X2)
MARK(div(div(X1''', X2'''), X2)) -> ADIV(div(mark(X1'''), X2'''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(true, X2''), X2)) -> ADIV(adiv(true, X2''), X2)
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Narrowing Transformation
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
MARK(div(div(true, X2''), X2)) -> ADIV(adiv(true, X2''), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
MARK(if(geq(X1'', X2''), X2, X3)) -> AIF(ageq(X1'', X2''), X2, X3)
AIF(false, X, Y) -> MARK(Y)
MARK(if(minus(X1'', X2''), X2, X3)) -> AIF(aminus(X1'', X2''), X2, X3)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(div(if(X1'', X2'', X3'), X2)) -> ADIV(aif(mark(X1''), X2'', X3'), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
nine new Dependency Pairs are created:
MARK(div(if(X1'', X2'', X3'), X2)) -> ADIV(aif(mark(X1''), X2'', X3'), X2)
MARK(div(if(X1''', X2''', X3''), X2)) -> ADIV(if(mark(X1'''), X2''', X3''), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(true, X2'', X3'), X2)) -> ADIV(aif(true, X2'', X3'), X2)
MARK(div(if(false, X2'', X3'), X2)) -> ADIV(aif(false, X2'', X3'), X2)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
MARK(div(if(false, X2'', X3'), X2)) -> ADIV(aif(false, X2'', X3'), X2)
MARK(div(if(true, X2'', X3'), X2)) -> ADIV(aif(true, X2'', X3'), X2)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(true, X2''), X2)) -> ADIV(adiv(true, X2''), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
MARK(if(geq(X1'', X2''), X2, X3)) -> AIF(ageq(X1'', X2''), X2, X3)
AIF(false, X, Y) -> MARK(Y)
MARK(if(minus(X1'', X2''), X2, X3)) -> AIF(aminus(X1'', X2''), X2, X3)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
three new Dependency Pairs are created:
MARK(if(minus(X1'', X2''), X2, X3)) -> AIF(aminus(X1'', X2''), X2, X3)
MARK(if(minus(0, X2'''), X2, X3)) -> AIF(0, X2, X3)
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
MARK(if(minus(X1''', X2'''), X2, X3)) -> AIF(minus(X1''', X2'''), X2, X3)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Narrowing Transformation
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
MARK(div(if(true, X2'', X3'), X2)) -> ADIV(aif(true, X2'', X3'), X2)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
MARK(div(div(true, X2''), X2)) -> ADIV(adiv(true, X2''), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
AIF(false, X, Y) -> MARK(Y)
MARK(if(geq(X1'', X2''), X2, X3)) -> AIF(ageq(X1'', X2''), X2, X3)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(if(false, X2'', X3'), X2)) -> ADIV(aif(false, X2'', X3'), X2)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
four new Dependency Pairs are created:
MARK(if(geq(X1'', X2''), X2, X3)) -> AIF(ageq(X1'', X2''), X2, X3)
MARK(if(geq(X1''', 0), X2, X3)) -> AIF(true, X2, X3)
MARK(if(geq(0, s(Y')), X2, X3)) -> AIF(false, X2, X3)
MARK(if(geq(s(X'), s(Y')), X2, X3)) -> AIF(ageq(X', Y'), X2, X3)
MARK(if(geq(X1''', X2'''), X2, X3)) -> AIF(geq(X1''', X2'''), X2, X3)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 13
↳Narrowing Transformation
MARK(if(geq(s(X'), s(Y')), X2, X3)) -> AIF(ageq(X', Y'), X2, X3)
MARK(if(geq(0, s(Y')), X2, X3)) -> AIF(false, X2, X3)
MARK(if(geq(X1''', 0), X2, X3)) -> AIF(true, X2, X3)
MARK(div(if(false, X2'', X3'), X2)) -> ADIV(aif(false, X2'', X3'), X2)
MARK(div(if(true, X2'', X3'), X2)) -> ADIV(aif(true, X2'', X3'), X2)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
MARK(div(div(true, X2''), X2)) -> ADIV(adiv(true, X2''), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
nine new Dependency Pairs are created:
MARK(if(div(X1'', X2''), X2, X3)) -> AIF(adiv(mark(X1''), X2''), X2, X3)
MARK(if(div(X1''', X2'''), X2, X3)) -> AIF(div(mark(X1'''), X2'''), X2, X3)
MARK(if(div(minus(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(aminus(X1', X2'''), X2''), X2, X3)
MARK(if(div(geq(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(ageq(X1', X2'''), X2''), X2, X3)
MARK(if(div(div(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(adiv(mark(X1'), X2'''), X2''), X2, X3)
MARK(if(div(if(X1', X2''', X3''), X2''), X2, X3)) -> AIF(adiv(aif(mark(X1'), X2''', X3''), X2''), X2, X3)
MARK(if(div(0, X2''), X2, X3)) -> AIF(adiv(0, X2''), X2, X3)
MARK(if(div(s(X'), X2''), X2, X3)) -> AIF(adiv(s(mark(X')), X2''), X2, X3)
MARK(if(div(true, X2''), X2, X3)) -> AIF(adiv(true, X2''), X2, X3)
MARK(if(div(false, X2''), X2, X3)) -> AIF(adiv(false, X2''), X2, X3)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 14
↳Narrowing Transformation
MARK(if(div(false, X2''), X2, X3)) -> AIF(adiv(false, X2''), X2, X3)
MARK(if(div(true, X2''), X2, X3)) -> AIF(adiv(true, X2''), X2, X3)
MARK(if(div(s(X'), X2''), X2, X3)) -> AIF(adiv(s(mark(X')), X2''), X2, X3)
MARK(if(div(0, X2''), X2, X3)) -> AIF(adiv(0, X2''), X2, X3)
MARK(if(div(if(X1', X2''', X3''), X2''), X2, X3)) -> AIF(adiv(aif(mark(X1'), X2''', X3''), X2''), X2, X3)
MARK(if(div(div(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(adiv(mark(X1'), X2'''), X2''), X2, X3)
MARK(if(div(geq(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(ageq(X1', X2'''), X2''), X2, X3)
MARK(if(div(minus(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(aminus(X1', X2'''), X2''), X2, X3)
MARK(if(geq(0, s(Y')), X2, X3)) -> AIF(false, X2, X3)
MARK(if(geq(X1''', 0), X2, X3)) -> AIF(true, X2, X3)
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
MARK(div(if(false, X2'', X3'), X2)) -> ADIV(aif(false, X2'', X3'), X2)
MARK(div(if(true, X2'', X3'), X2)) -> ADIV(aif(true, X2'', X3'), X2)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
MARK(div(div(true, X2''), X2)) -> ADIV(adiv(true, X2''), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
MARK(if(geq(s(X'), s(Y')), X2, X3)) -> AIF(ageq(X', Y'), X2, X3)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
nine new Dependency Pairs are created:
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), X2'', X3''), X2, X3)
MARK(if(if(X1''', X2''', X3'''), X2, X3)) -> AIF(if(mark(X1'''), X2''', X3'''), X2, X3)
MARK(if(if(minus(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(aminus(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(if(geq(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(ageq(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(if(div(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(adiv(mark(X1'), X2'''), X2'', X3''), X2, X3)
MARK(if(if(if(X1', X2''', X3'''), X2'', X3''), X2, X3)) -> AIF(aif(aif(mark(X1'), X2''', X3'''), X2'', X3''), X2, X3)
MARK(if(if(0, X2'', X3''), X2, X3)) -> AIF(aif(0, X2'', X3''), X2, X3)
MARK(if(if(s(X'), X2'', X3''), X2, X3)) -> AIF(aif(s(mark(X')), X2'', X3''), X2, X3)
MARK(if(if(true, X2'', X3''), X2, X3)) -> AIF(aif(true, X2'', X3''), X2, X3)
MARK(if(if(false, X2'', X3''), X2, X3)) -> AIF(aif(false, X2'', X3''), X2, X3)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 15
↳Polynomial Ordering
MARK(if(if(false, X2'', X3''), X2, X3)) -> AIF(aif(false, X2'', X3''), X2, X3)
MARK(if(if(true, X2'', X3''), X2, X3)) -> AIF(aif(true, X2'', X3''), X2, X3)
MARK(if(if(s(X'), X2'', X3''), X2, X3)) -> AIF(aif(s(mark(X')), X2'', X3''), X2, X3)
MARK(if(if(0, X2'', X3''), X2, X3)) -> AIF(aif(0, X2'', X3''), X2, X3)
MARK(if(if(if(X1', X2''', X3'''), X2'', X3''), X2, X3)) -> AIF(aif(aif(mark(X1'), X2''', X3'''), X2'', X3''), X2, X3)
MARK(if(if(div(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(adiv(mark(X1'), X2'''), X2'', X3''), X2, X3)
MARK(if(if(geq(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(ageq(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(if(minus(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(aminus(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(div(true, X2''), X2, X3)) -> AIF(adiv(true, X2''), X2, X3)
MARK(if(div(s(X'), X2''), X2, X3)) -> AIF(adiv(s(mark(X')), X2''), X2, X3)
MARK(if(div(0, X2''), X2, X3)) -> AIF(adiv(0, X2''), X2, X3)
MARK(if(div(if(X1', X2''', X3''), X2''), X2, X3)) -> AIF(adiv(aif(mark(X1'), X2''', X3''), X2''), X2, X3)
MARK(if(div(div(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(adiv(mark(X1'), X2'''), X2''), X2, X3)
MARK(if(div(geq(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(ageq(X1', X2'''), X2''), X2, X3)
MARK(if(div(minus(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(aminus(X1', X2'''), X2''), X2, X3)
MARK(if(geq(s(X'), s(Y')), X2, X3)) -> AIF(ageq(X', Y'), X2, X3)
MARK(if(geq(0, s(Y')), X2, X3)) -> AIF(false, X2, X3)
MARK(if(geq(X1''', 0), X2, X3)) -> AIF(true, X2, X3)
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
MARK(div(if(false, X2'', X3'), X2)) -> ADIV(aif(false, X2'', X3'), X2)
MARK(div(if(true, X2'', X3'), X2)) -> ADIV(aif(true, X2'', X3'), X2)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
MARK(div(div(true, X2''), X2)) -> ADIV(adiv(true, X2''), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
MARK(if(div(false, X2''), X2, X3)) -> AIF(adiv(false, X2''), X2, X3)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(if(if(true, X2'', X3''), X2, X3)) -> AIF(aif(true, X2'', X3''), X2, X3)
MARK(if(div(true, X2''), X2, X3)) -> AIF(adiv(true, X2''), X2, X3)
MARK(div(if(true, X2'', X3'), X2)) -> ADIV(aif(true, X2'', X3'), X2)
MARK(div(div(true, X2''), X2)) -> ADIV(adiv(true, X2''), X2)
MARK(if(true, X2, X3)) -> AIF(true, X2, X3)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 1 POL(mark(x1)) = 0 POL(a__div(x1, x2)) = 0 POL(if(x1, x2, x3)) = x1 + x2 + x3 POL(0) = 0 POL(a__if(x1, x2, x3)) = 0 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = x1 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = x1 POL(A__DIV(x1, x2)) = 0 POL(A__IF(x1, x2, x3)) = x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 16
↳Polynomial Ordering
MARK(if(if(false, X2'', X3''), X2, X3)) -> AIF(aif(false, X2'', X3''), X2, X3)
MARK(if(if(s(X'), X2'', X3''), X2, X3)) -> AIF(aif(s(mark(X')), X2'', X3''), X2, X3)
MARK(if(if(0, X2'', X3''), X2, X3)) -> AIF(aif(0, X2'', X3''), X2, X3)
MARK(if(if(if(X1', X2''', X3'''), X2'', X3''), X2, X3)) -> AIF(aif(aif(mark(X1'), X2''', X3'''), X2'', X3''), X2, X3)
MARK(if(if(div(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(adiv(mark(X1'), X2'''), X2'', X3''), X2, X3)
MARK(if(if(geq(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(ageq(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(if(minus(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(aminus(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(div(s(X'), X2''), X2, X3)) -> AIF(adiv(s(mark(X')), X2''), X2, X3)
MARK(if(div(0, X2''), X2, X3)) -> AIF(adiv(0, X2''), X2, X3)
MARK(if(div(if(X1', X2''', X3''), X2''), X2, X3)) -> AIF(adiv(aif(mark(X1'), X2''', X3''), X2''), X2, X3)
MARK(if(div(div(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(adiv(mark(X1'), X2'''), X2''), X2, X3)
MARK(if(div(geq(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(ageq(X1', X2'''), X2''), X2, X3)
MARK(if(div(minus(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(aminus(X1', X2'''), X2''), X2, X3)
MARK(if(geq(s(X'), s(Y')), X2, X3)) -> AIF(ageq(X', Y'), X2, X3)
MARK(if(geq(0, s(Y')), X2, X3)) -> AIF(false, X2, X3)
MARK(if(geq(X1''', 0), X2, X3)) -> AIF(true, X2, X3)
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
MARK(div(if(false, X2'', X3'), X2)) -> ADIV(aif(false, X2'', X3'), X2)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
MARK(if(div(false, X2''), X2, X3)) -> AIF(adiv(false, X2''), X2, X3)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(if(if(false, X2'', X3''), X2, X3)) -> AIF(aif(false, X2'', X3''), X2, X3)
MARK(div(if(false, X2'', X3'), X2)) -> ADIV(aif(false, X2'', X3'), X2)
MARK(div(div(false, X2''), X2)) -> ADIV(adiv(false, X2''), X2)
MARK(if(false, X2, X3)) -> AIF(false, X2, X3)
MARK(if(div(false, X2''), X2, X3)) -> AIF(adiv(false, X2''), X2, X3)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 1 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = 0 POL(a__div(x1, x2)) = 0 POL(if(x1, x2, x3)) = x1 + x2 + x3 POL(0) = 0 POL(a__if(x1, x2, x3)) = 0 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = x1 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = x1 POL(A__DIV(x1, x2)) = 0 POL(A__IF(x1, x2, x3)) = x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 17
↳Polynomial Ordering
MARK(if(if(s(X'), X2'', X3''), X2, X3)) -> AIF(aif(s(mark(X')), X2'', X3''), X2, X3)
MARK(if(if(0, X2'', X3''), X2, X3)) -> AIF(aif(0, X2'', X3''), X2, X3)
MARK(if(if(if(X1', X2''', X3'''), X2'', X3''), X2, X3)) -> AIF(aif(aif(mark(X1'), X2''', X3'''), X2'', X3''), X2, X3)
MARK(if(if(div(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(adiv(mark(X1'), X2'''), X2'', X3''), X2, X3)
MARK(if(if(geq(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(ageq(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(if(minus(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(aminus(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(div(s(X'), X2''), X2, X3)) -> AIF(adiv(s(mark(X')), X2''), X2, X3)
MARK(if(div(0, X2''), X2, X3)) -> AIF(adiv(0, X2''), X2, X3)
MARK(if(div(if(X1', X2''', X3''), X2''), X2, X3)) -> AIF(adiv(aif(mark(X1'), X2''', X3''), X2''), X2, X3)
MARK(if(div(div(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(adiv(mark(X1'), X2'''), X2''), X2, X3)
MARK(if(div(geq(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(ageq(X1', X2'''), X2''), X2, X3)
MARK(if(div(minus(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(aminus(X1', X2'''), X2''), X2, X3)
MARK(if(geq(s(X'), s(Y')), X2, X3)) -> AIF(ageq(X', Y'), X2, X3)
MARK(if(geq(0, s(Y')), X2, X3)) -> AIF(false, X2, X3)
MARK(if(geq(X1''', 0), X2, X3)) -> AIF(true, X2, X3)
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(if(if(geq(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(ageq(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(div(geq(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(ageq(X1', X2'''), X2''), X2, X3)
MARK(if(geq(s(X'), s(Y')), X2, X3)) -> AIF(ageq(X', Y'), X2, X3)
MARK(if(geq(0, s(Y')), X2, X3)) -> AIF(false, X2, X3)
MARK(if(geq(X1''', 0), X2, X3)) -> AIF(true, X2, X3)
MARK(div(if(geq(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(ageq(X1', X2'''), X2'', X3'), X2)
MARK(div(div(geq(X1', X2'''), X2''), X2)) -> ADIV(adiv(ageq(X1', X2'''), X2''), X2)
MARK(div(geq(s(X'), s(Y')), X2)) -> ADIV(ageq(X', Y'), X2)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 1 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = 0 POL(a__div(x1, x2)) = 0 POL(if(x1, x2, x3)) = x1 + x2 + x3 POL(0) = 0 POL(a__if(x1, x2, x3)) = 0 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = x1 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = x1 POL(A__DIV(x1, x2)) = 0 POL(A__IF(x1, x2, x3)) = x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 18
↳Polynomial Ordering
MARK(if(if(s(X'), X2'', X3''), X2, X3)) -> AIF(aif(s(mark(X')), X2'', X3''), X2, X3)
MARK(if(if(0, X2'', X3''), X2, X3)) -> AIF(aif(0, X2'', X3''), X2, X3)
MARK(if(if(if(X1', X2''', X3'''), X2'', X3''), X2, X3)) -> AIF(aif(aif(mark(X1'), X2''', X3'''), X2'', X3''), X2, X3)
MARK(if(if(div(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(adiv(mark(X1'), X2'''), X2'', X3''), X2, X3)
MARK(if(if(minus(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(aminus(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(div(s(X'), X2''), X2, X3)) -> AIF(adiv(s(mark(X')), X2''), X2, X3)
MARK(if(div(0, X2''), X2, X3)) -> AIF(adiv(0, X2''), X2, X3)
MARK(if(div(if(X1', X2''', X3''), X2''), X2, X3)) -> AIF(adiv(aif(mark(X1'), X2''', X3''), X2''), X2, X3)
MARK(if(div(div(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(adiv(mark(X1'), X2'''), X2''), X2, X3)
MARK(if(div(minus(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(aminus(X1', X2'''), X2''), X2, X3)
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(if(if(s(X'), X2'', X3''), X2, X3)) -> AIF(aif(s(mark(X')), X2'', X3''), X2, X3)
MARK(if(if(0, X2'', X3''), X2, X3)) -> AIF(aif(0, X2'', X3''), X2, X3)
MARK(if(if(if(X1', X2''', X3'''), X2'', X3''), X2, X3)) -> AIF(aif(aif(mark(X1'), X2''', X3'''), X2'', X3''), X2, X3)
MARK(if(if(div(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(adiv(mark(X1'), X2'''), X2'', X3''), X2, X3)
MARK(if(if(minus(X1', X2'''), X2'', X3''), X2, X3)) -> AIF(aif(aminus(X1', X2'''), X2'', X3''), X2, X3)
MARK(if(div(s(X'), X2''), X2, X3)) -> AIF(adiv(s(mark(X')), X2''), X2, X3)
MARK(if(div(0, X2''), X2, X3)) -> AIF(adiv(0, X2''), X2, X3)
MARK(if(div(if(X1', X2''', X3''), X2''), X2, X3)) -> AIF(adiv(aif(mark(X1'), X2''', X3''), X2''), X2, X3)
MARK(if(div(div(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(adiv(mark(X1'), X2'''), X2''), X2, X3)
MARK(if(div(minus(X1', X2'''), X2''), X2, X3)) -> AIF(adiv(aminus(X1', X2'''), X2''), X2, X3)
MARK(if(minus(s(X'), s(Y')), X2, X3)) -> AIF(aminus(X', Y'), X2, X3)
MARK(div(if(s(X'), X2'', X3'), X2)) -> ADIV(aif(s(mark(X')), X2'', X3'), X2)
MARK(div(if(0, X2'', X3'), X2)) -> ADIV(aif(0, X2'', X3'), X2)
MARK(div(if(if(X1', X2''', X3''), X2'', X3'), X2)) -> ADIV(aif(aif(mark(X1'), X2''', X3''), X2'', X3'), X2)
MARK(div(if(div(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(adiv(mark(X1'), X2'''), X2'', X3'), X2)
MARK(div(if(minus(X1', X2'''), X2'', X3'), X2)) -> ADIV(aif(aminus(X1', X2'''), X2'', X3'), X2)
MARK(div(div(if(X1', X2''', X3'), X2''), X2)) -> ADIV(adiv(aif(mark(X1'), X2''', X3'), X2''), X2)
MARK(if(X1, X2, X3)) -> MARK(X1)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = 0 POL(a__div(x1, x2)) = 0 POL(if(x1, x2, x3)) = 1 + x1 + x2 + x3 POL(0) = 0 POL(a__if(x1, x2, x3)) = 0 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = x1 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = x1 POL(A__DIV(x1, x2)) = 0 POL(A__IF(x1, x2, x3)) = x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 19
↳Instantiation Transformation
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(div(X1, X2)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
one new Dependency Pair is created:
AIF(true, X, Y) -> MARK(X)
AIF(true, s(div(minus(X'', Y'0), s(Y'''))), 0) -> MARK(s(div(minus(X'', Y'0), s(Y'''))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 20
↳Instantiation Transformation
AIF(true, s(div(minus(X'', Y'0), s(Y'''))), 0) -> MARK(s(div(minus(X'', Y'0), s(Y'''))))
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
MARK(div(X1, X2)) -> MARK(X1)
AIF(false, X, Y) -> MARK(Y)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
one new Dependency Pair is created:
AIF(false, X, Y) -> MARK(Y)
AIF(false, s(div(minus(X'', Y'0), s(Y'''))), 0) -> MARK(0)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 21
↳Polynomial Ordering
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(div(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
AIF(true, s(div(minus(X'', Y'0), s(Y'''))), 0) -> MARK(s(div(minus(X'', Y'0), s(Y'''))))
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(div(div(0, X2''), X2)) -> ADIV(adiv(0, X2''), X2)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = 0 POL(a__div(x1, x2)) = 0 POL(if(x1, x2, x3)) = 0 POL(0) = 1 POL(a__if(x1, x2, x3)) = 0 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = x1 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = x1 POL(A__DIV(x1, x2)) = 0 POL(A__IF(x1, x2, x3)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 22
↳Polynomial Ordering
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(div(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
AIF(true, s(div(minus(X'', Y'0), s(Y'''))), 0) -> MARK(s(div(minus(X'', Y'0), s(Y'''))))
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(div(div(s(X'), X2''), X2)) -> ADIV(adiv(s(mark(X')), X2''), X2)
MARK(div(div(div(X1', X2'''), X2''), X2)) -> ADIV(adiv(adiv(mark(X1'), X2'''), X2''), X2)
MARK(div(div(minus(X1', X2'''), X2''), X2)) -> ADIV(adiv(aminus(X1', X2'''), X2''), X2)
MARK(div(X1, X2)) -> MARK(X1)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = 0 POL(a__div(x1, x2)) = 0 POL(if(x1, x2, x3)) = 0 POL(0) = 1 POL(a__if(x1, x2, x3)) = 0 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = x1 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = 1 + x1 POL(A__DIV(x1, x2)) = 1 POL(A__IF(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 23
↳Polynomial Ordering
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
MARK(s(X)) -> MARK(X)
AIF(true, s(div(minus(X'', Y'0), s(Y'''))), 0) -> MARK(s(div(minus(X'', Y'0), s(Y'''))))
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
MARK(s(X)) -> MARK(X)
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
POL(MARK(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(true) = 0 POL(mark(x1)) = x1 POL(a__div(x1, x2)) = x1 POL(if(x1, x2, x3)) = x2 + x3 POL(0) = 0 POL(a__if(x1, x2, x3)) = x2 + x3 POL(a__minus(x1, x2)) = 0 POL(s(x1)) = 1 + x1 POL(a__geq(x1, x2)) = 0 POL(div(x1, x2)) = x1 POL(A__DIV(x1, x2)) = x1 POL(A__IF(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 24
↳Dependency Graph
MARK(div(minus(s(X'), s(Y')), X2)) -> ADIV(aminus(X', Y'), X2)
ADIV(s(X), s(Y)) -> AIF(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(s(X'), X2)) -> ADIV(s(mark(X')), X2)
AIF(true, s(div(minus(X'', Y'0), s(Y'''))), 0) -> MARK(s(div(minus(X'', Y'0), s(Y'''))))
aminus(0, Y) -> 0
aminus(s(X), s(Y)) -> aminus(X, Y)
aminus(X1, X2) -> minus(X1, X2)
ageq(X, 0) -> true
ageq(0, s(Y)) -> false
ageq(s(X), s(Y)) -> ageq(X, Y)
ageq(X1, X2) -> geq(X1, X2)
adiv(0, s(Y)) -> 0
adiv(s(X), s(Y)) -> aif(ageq(X, Y), s(div(minus(X, Y), s(Y))), 0)
adiv(X1, X2) -> div(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(minus(X1, X2)) -> aminus(X1, X2)
mark(geq(X1, X2)) -> ageq(X1, X2)
mark(div(X1, X2)) -> adiv(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(0) -> 0
mark(s(X)) -> s(mark(X))
mark(true) -> true
mark(false) -> false