Term Rewriting System R:
[YS, X, XS, Y, L, X1, X2]
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(app(cons(X, XS), YS)) -> CONS(X, app(XS, YS))
ACTIVE(app(cons(X, XS), YS)) -> APP(XS, YS)
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> CONS(app(Y, cons(X, nil)), zWadr(XS, YS))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> APP(Y, cons(X, nil))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> CONS(X, nil)
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> ZWADR(XS, YS)
ACTIVE(prefix(L)) -> CONS(nil, zWadr(L, prefix(L)))
ACTIVE(prefix(L)) -> ZWADR(L, prefix(L))
ACTIVE(app(X1, X2)) -> APP(active(X1), X2)
ACTIVE(app(X1, X2)) -> ACTIVE(X1)
ACTIVE(app(X1, X2)) -> APP(X1, active(X2))
ACTIVE(app(X1, X2)) -> ACTIVE(X2)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(zWadr(X1, X2)) -> ZWADR(active(X1), X2)
ACTIVE(zWadr(X1, X2)) -> ACTIVE(X1)
ACTIVE(zWadr(X1, X2)) -> ZWADR(X1, active(X2))
ACTIVE(zWadr(X1, X2)) -> ACTIVE(X2)
ACTIVE(prefix(X)) -> PREFIX(active(X))
ACTIVE(prefix(X)) -> ACTIVE(X)
APP(mark(X1), X2) -> APP(X1, X2)
APP(X1, mark(X2)) -> APP(X1, X2)
APP(ok(X1), ok(X2)) -> APP(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
ZWADR(mark(X1), X2) -> ZWADR(X1, X2)
ZWADR(X1, mark(X2)) -> ZWADR(X1, X2)
ZWADR(ok(X1), ok(X2)) -> ZWADR(X1, X2)
PREFIX(mark(X)) -> PREFIX(X)
PREFIX(ok(X)) -> PREFIX(X)
PROPER(app(X1, X2)) -> APP(proper(X1), proper(X2))
PROPER(app(X1, X2)) -> PROPER(X1)
PROPER(app(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(zWadr(X1, X2)) -> ZWADR(proper(X1), proper(X2))
PROPER(zWadr(X1, X2)) -> PROPER(X1)
PROPER(zWadr(X1, X2)) -> PROPER(X2)
PROPER(prefix(X)) -> PREFIX(proper(X))
PROPER(prefix(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
Furthermore, R contains nine SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
Dependency Pairs:
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
- CONS(mark(X1), X2) -> CONS(X1, X2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
Dependency Pairs:
APP(ok(X1), ok(X2)) -> APP(X1, X2)
APP(X1, mark(X2)) -> APP(X1, X2)
APP(mark(X1), X2) -> APP(X1, X2)
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- APP(ok(X1), ok(X2)) -> APP(X1, X2)
- APP(X1, mark(X2)) -> APP(X1, X2)
- APP(mark(X1), X2) -> APP(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
Dependency Pairs:
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- FROM(ok(X)) -> FROM(X)
- FROM(mark(X)) -> FROM(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
Dependency Pairs:
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- S(ok(X)) -> S(X)
- S(mark(X)) -> S(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
Dependency Pairs:
ZWADR(ok(X1), ok(X2)) -> ZWADR(X1, X2)
ZWADR(X1, mark(X2)) -> ZWADR(X1, X2)
ZWADR(mark(X1), X2) -> ZWADR(X1, X2)
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ZWADR(ok(X1), ok(X2)) -> ZWADR(X1, X2)
- ZWADR(X1, mark(X2)) -> ZWADR(X1, X2)
- ZWADR(mark(X1), X2) -> ZWADR(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳Size-Change Principle
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
Dependency Pairs:
PREFIX(ok(X)) -> PREFIX(X)
PREFIX(mark(X)) -> PREFIX(X)
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- PREFIX(ok(X)) -> PREFIX(X)
- PREFIX(mark(X)) -> PREFIX(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳Size-Change Principle
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
Dependency Pairs:
ACTIVE(prefix(X)) -> ACTIVE(X)
ACTIVE(zWadr(X1, X2)) -> ACTIVE(X2)
ACTIVE(zWadr(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(app(X1, X2)) -> ACTIVE(X2)
ACTIVE(app(X1, X2)) -> ACTIVE(X1)
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ACTIVE(prefix(X)) -> ACTIVE(X)
- ACTIVE(zWadr(X1, X2)) -> ACTIVE(X2)
- ACTIVE(zWadr(X1, X2)) -> ACTIVE(X1)
- ACTIVE(s(X)) -> ACTIVE(X)
- ACTIVE(from(X)) -> ACTIVE(X)
- ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
- ACTIVE(app(X1, X2)) -> ACTIVE(X2)
- ACTIVE(app(X1, X2)) -> ACTIVE(X1)
and get the following Size-Change Graph(s): {8, 7, 6, 5, 4, 3, 2, 1} | , | {8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {8, 7, 6, 5, 4, 3, 2, 1} | , | {8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
from(x1) -> from(x1)
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
app(x1, x2) -> app(x1, x2)
prefix(x1) -> prefix(x1)
zWadr(x1, x2) -> zWadr(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Size-Change Principle
→DP Problem 9
↳AFS
Dependency Pairs:
PROPER(prefix(X)) -> PROPER(X)
PROPER(zWadr(X1, X2)) -> PROPER(X2)
PROPER(zWadr(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(app(X1, X2)) -> PROPER(X2)
PROPER(app(X1, X2)) -> PROPER(X1)
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- PROPER(prefix(X)) -> PROPER(X)
- PROPER(zWadr(X1, X2)) -> PROPER(X2)
- PROPER(zWadr(X1, X2)) -> PROPER(X1)
- PROPER(s(X)) -> PROPER(X)
- PROPER(from(X)) -> PROPER(X)
- PROPER(cons(X1, X2)) -> PROPER(X2)
- PROPER(cons(X1, X2)) -> PROPER(X1)
- PROPER(app(X1, X2)) -> PROPER(X2)
- PROPER(app(X1, X2)) -> PROPER(X1)
and get the following Size-Change Graph(s): {9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
from(x1) -> from(x1)
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
app(x1, x2) -> app(x1, x2)
prefix(x1) -> prefix(x1)
zWadr(x1, x2) -> zWadr(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳Argument Filtering and Ordering
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The following dependency pair can be strictly oriented:
TOP(mark(X)) -> TOP(proper(X))
The following usable rules w.r.t. the AFS can be oriented:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
Used ordering: Lexicographic Path Order with Precedence:
from > mark
zWadr > app > mark
prefix > mark
prefix > nil
resulting in one new DP problem.
Used Argument Filtering System: TOP(x1) -> x1
ok(x1) -> x1
active(x1) -> x1
prefix(x1) -> prefix(x1)
cons(x1, x2) -> x1
zWadr(x1, x2) -> zWadr(x1, x2)
app(x1, x2) -> app(x1, x2)
mark(x1) -> mark(x1)
from(x1) -> from(x1)
s(x1) -> x1
proper(x1) -> x1
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
→DP Problem 10
↳Negative Polynomial Order
Dependency Pair:
TOP(ok(X)) -> TOP(active(X))
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The following Dependency Pair can be strictly oriented using the given order.
TOP(ok(X)) -> TOP(active(X))
Moreover, the following usable rules (regarding the implicit AFS) are oriented.
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
Used ordering:
Polynomial Order with Interpretation:
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1 + 1
POL( active(x1) ) = x1
POL( app(x1, x2) ) = x2
POL( mark(x1) ) = 0
POL( cons(x1, x2) ) = x2
POL( from(x1) ) = x1
POL( s(x1) ) = x1
POL( zWadr(x1, x2) ) = x2
POL( prefix(x1) ) = x1
This results in one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳AFS
→DP Problem 10
↳Neg POLO
...
→DP Problem 11
↳Dependency Graph
Dependency Pair:
Rules:
active(app(nil, YS)) -> mark(YS)
active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) -> mark(nil)
active(zWadr(XS, nil)) -> mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
active(app(X1, X2)) -> app(active(X1), X2)
active(app(X1, X2)) -> app(X1, active(X2))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
active(s(X)) -> s(active(X))
active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
active(prefix(X)) -> prefix(active(X))
app(mark(X1), X2) -> mark(app(X1, X2))
app(X1, mark(X2)) -> mark(app(X1, X2))
app(ok(X1), ok(X2)) -> ok(app(X1, X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
prefix(mark(X)) -> mark(prefix(X))
prefix(ok(X)) -> ok(prefix(X))
proper(app(X1, X2)) -> app(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
proper(prefix(X)) -> prefix(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Using the Dependency Graph resulted in no new DP problems.
Termination of R successfully shown.
Duration:
0:13 minutes