Term Rewriting System R:
[X, Y, Z]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
two new Dependency Pairs are created:

SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
two new Dependency Pairs are created:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, nfrom(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Polynomial Ordering


Dependency Pairs:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X





The following dependency pair can be strictly oriented:

SEL(s(X), cons(Y, Z')) -> SEL(X, Z')


Additionally, the following rules can be oriented:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  1 + x1  
  POL(n__from(x1))=  x1  
  POL(activate(x1))=  1 + x1  
  POL(0)=  1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(SEL(x1, x2))=  x2  
  POL(s(x1))=  0  
  POL(sel(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 4
Instantiation Transformation


Dependency Pair:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
one new Dependency Pair is created:

SEL(s(X''), cons(Y', nfrom(s(X'''''')))) -> SEL(X'', cons(s(X''''''), nfrom(s(s(X'''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 5
Instantiation Transformation


Dependency Pair:

SEL(s(X''), cons(Y', nfrom(s(X'''''')))) -> SEL(X'', cons(s(X''''''), nfrom(s(s(X'''''')))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X''), cons(Y', nfrom(s(X'''''')))) -> SEL(X'', cons(s(X''''''), nfrom(s(s(X'''''')))))
one new Dependency Pair is created:

SEL(s(X''''), cons(s(X'''''''0), nfrom(s(s(X'''''''''))))) -> SEL(X'''', cons(s(s(X''''''''')), nfrom(s(s(s(X'''''''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 6
Instantiation Transformation


Dependency Pair:

SEL(s(X''''), cons(s(X'''''''0), nfrom(s(s(X'''''''''))))) -> SEL(X'''', cons(s(s(X''''''''')), nfrom(s(s(s(X'''''''''))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X''''), cons(s(X'''''''0), nfrom(s(s(X'''''''''))))) -> SEL(X'''', cons(s(s(X''''''''')), nfrom(s(s(s(X'''''''''))))))
one new Dependency Pair is created:

SEL(s(X''''''), cons(s(s(X'''''''''''')), nfrom(s(s(s(X''''''''''''')))))) -> SEL(X'''''', cons(s(s(s(X'''''''''''''))), nfrom(s(s(s(s(X''''''''''''')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 7
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

SEL(s(X''''''), cons(s(s(X'''''''''''')), nfrom(s(s(s(X''''''''''''')))))) -> SEL(X'''''', cons(s(s(s(X'''''''''''''))), nfrom(s(s(s(s(X''''''''''''')))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X




Termination of R could not be shown.
Duration:
0:00 minutes