Term Rewriting System R:
[X, Y, Z]
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Nar


Dependency Pairs:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

ACTIVATE(ns(X)) -> ACTIVATE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  x1  
  POL(n__s(x1))=  1 + x1  
  POL(ACTIVATE(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 3
Polynomial Ordering
       →DP Problem 2
Nar


Dependency Pair:

ACTIVATE(nfrom(X)) -> ACTIVATE(X)


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

ACTIVATE(nfrom(X)) -> ACTIVATE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  1 + x1  
  POL(ACTIVATE(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 3
Polo
             ...
               →DP Problem 4
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Narrowing Transformation


Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
three new Dependency Pairs are created:

SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(activate(X'')))
SEL(s(X), cons(Y, ns(X''))) -> SEL(X, s(activate(X'')))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 5
Narrowing Transformation


Dependency Pairs:

SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, ns(X''))) -> SEL(X, s(activate(X'')))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(activate(X'')))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(activate(X'')))
five new Dependency Pairs are created:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(activate(X'''), nfrom(ns(activate(X''')))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, nfrom(activate(X''')))
SEL(s(X), cons(Y, nfrom(nfrom(X''')))) -> SEL(X, from(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(ns(X''')))) -> SEL(X, from(s(activate(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, from(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 5
Nar
             ...
               →DP Problem 6
Narrowing Transformation


Dependency Pairs:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, from(X'''))
SEL(s(X), cons(Y, nfrom(nfrom(X''')))) -> SEL(X, from(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(ns(X''')))) -> SEL(X, from(s(activate(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(activate(X'''), nfrom(ns(activate(X''')))))
SEL(s(X), cons(Y, ns(X''))) -> SEL(X, s(activate(X'')))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, ns(X''))) -> SEL(X, s(activate(X'')))
four new Dependency Pairs are created:

SEL(s(X), cons(Y, ns(X'''))) -> SEL(X, ns(activate(X''')))
SEL(s(X), cons(Y, ns(nfrom(X''')))) -> SEL(X, s(from(activate(X'''))))
SEL(s(X), cons(Y, ns(ns(X''')))) -> SEL(X, s(s(activate(X'''))))
SEL(s(X), cons(Y, ns(X'''))) -> SEL(X, s(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 5
Nar
             ...
               →DP Problem 7
Polynomial Ordering


Dependency Pairs:

SEL(s(X), cons(Y, ns(X'''))) -> SEL(X, s(X'''))
SEL(s(X), cons(Y, ns(ns(X''')))) -> SEL(X, s(s(activate(X'''))))
SEL(s(X), cons(Y, ns(nfrom(X''')))) -> SEL(X, s(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(nfrom(X''')))) -> SEL(X, from(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(ns(X''')))) -> SEL(X, from(s(activate(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(activate(X'''), nfrom(ns(activate(X''')))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, from(X'''))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pairs can be strictly oriented:

SEL(s(X), cons(Y, ns(X'''))) -> SEL(X, s(X'''))
SEL(s(X), cons(Y, ns(ns(X''')))) -> SEL(X, s(s(activate(X'''))))
SEL(s(X), cons(Y, ns(nfrom(X''')))) -> SEL(X, s(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(nfrom(X''')))) -> SEL(X, from(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(ns(X''')))) -> SEL(X, from(s(activate(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(activate(X'''), nfrom(ns(activate(X''')))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, from(X'''))


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  0  
  POL(from(x1))=  0  
  POL(activate(x1))=  0  
  POL(cons(x1, x2))=  0  
  POL(SEL(x1, x2))=  x1  
  POL(n__s(x1))=  0  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 5
Nar
             ...
               →DP Problem 8
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes