R
↳Dependency Pair Analysis
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Nar
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
ACTIVATE(ns(X)) -> ACTIVATE(X)
POL(n__from(x1)) = x1 POL(n__s(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 2
↳Nar
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
POL(n__from(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polo
...
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Nar
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
three new Dependency Pairs are created:
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(activate(X'')))
SEL(s(X), cons(Y, ns(X''))) -> SEL(X, s(activate(X'')))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 5
↳Narrowing Transformation
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, ns(X''))) -> SEL(X, s(activate(X'')))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(activate(X'')))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
five new Dependency Pairs are created:
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(activate(X'')))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(activate(X'''), nfrom(ns(activate(X''')))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, nfrom(activate(X''')))
SEL(s(X), cons(Y, nfrom(nfrom(X''')))) -> SEL(X, from(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(ns(X''')))) -> SEL(X, from(s(activate(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, from(X'''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 5
↳Nar
...
→DP Problem 6
↳Narrowing Transformation
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, from(X'''))
SEL(s(X), cons(Y, nfrom(nfrom(X''')))) -> SEL(X, from(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(ns(X''')))) -> SEL(X, from(s(activate(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(activate(X'''), nfrom(ns(activate(X''')))))
SEL(s(X), cons(Y, ns(X''))) -> SEL(X, s(activate(X'')))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
four new Dependency Pairs are created:
SEL(s(X), cons(Y, ns(X''))) -> SEL(X, s(activate(X'')))
SEL(s(X), cons(Y, ns(X'''))) -> SEL(X, ns(activate(X''')))
SEL(s(X), cons(Y, ns(nfrom(X''')))) -> SEL(X, s(from(activate(X'''))))
SEL(s(X), cons(Y, ns(ns(X''')))) -> SEL(X, s(s(activate(X'''))))
SEL(s(X), cons(Y, ns(X'''))) -> SEL(X, s(X'''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 5
↳Nar
...
→DP Problem 7
↳Polynomial Ordering
SEL(s(X), cons(Y, ns(X'''))) -> SEL(X, s(X'''))
SEL(s(X), cons(Y, ns(ns(X''')))) -> SEL(X, s(s(activate(X'''))))
SEL(s(X), cons(Y, ns(nfrom(X''')))) -> SEL(X, s(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(nfrom(X''')))) -> SEL(X, from(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(ns(X''')))) -> SEL(X, from(s(activate(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(activate(X'''), nfrom(ns(activate(X''')))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, from(X'''))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
SEL(s(X), cons(Y, ns(X'''))) -> SEL(X, s(X'''))
SEL(s(X), cons(Y, ns(ns(X''')))) -> SEL(X, s(s(activate(X'''))))
SEL(s(X), cons(Y, ns(nfrom(X''')))) -> SEL(X, s(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(nfrom(X''')))) -> SEL(X, from(from(activate(X'''))))
SEL(s(X), cons(Y, nfrom(ns(X''')))) -> SEL(X, from(s(activate(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(activate(X'''), nfrom(ns(activate(X''')))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, from(X'''))
POL(n__from(x1)) = 0 POL(from(x1)) = 0 POL(activate(x1)) = 0 POL(cons(x1, x2)) = 0 POL(SEL(x1, x2)) = x1 POL(n__s(x1)) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 5
↳Nar
...
→DP Problem 8
↳Dependency Graph
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X