Term Rewriting System R:
[Z, X, Y, X1, X2]
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ADD(s(X), Y) -> S(nadd(activate(X), Y))
ADD(s(X), Y) -> ACTIVATE(X)
LEN(cons(X, Z)) -> S(nlen(activate(Z)))
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(activate(X1), activate(X2))
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(X)
ACTIVATE(nadd(X1, X2)) -> ADD(activate(X1), activate(X2))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nlen(X)) -> LEN(activate(X))
ACTIVATE(nlen(X)) -> ACTIVATE(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pairs:

ACTIVATE(nlen(X)) -> ACTIVATE(X)
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(X)) -> LEN(activate(X))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(activate(X1), activate(X2))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(activate(X1), activate(X2))
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)


Rules:


fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nfst(X1, X2)) -> FST(activate(X1), activate(X2))
12 new Dependency Pairs are created:

ACTIVATE(nfst(nfst(X1'', X2''), X2)) -> FST(fst(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nfst(nfrom(X'), X2)) -> FST(from(activate(X')), activate(X2))
ACTIVATE(nfst(ns(X'), X2)) -> FST(s(X'), activate(X2))
ACTIVATE(nfst(nadd(X1'', X2''), X2)) -> FST(add(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nfst(nlen(X'), X2)) -> FST(len(activate(X')), activate(X2))
ACTIVATE(nfst(X1', X2)) -> FST(X1', activate(X2))
ACTIVATE(nfst(X1, nfst(X1'', X2''))) -> FST(activate(X1), fst(activate(X1''), activate(X2'')))
ACTIVATE(nfst(X1, nfrom(X'))) -> FST(activate(X1), from(activate(X')))
ACTIVATE(nfst(X1, ns(X'))) -> FST(activate(X1), s(X'))
ACTIVATE(nfst(X1, nadd(X1'', X2''))) -> FST(activate(X1), add(activate(X1''), activate(X2'')))
ACTIVATE(nfst(X1, nlen(X'))) -> FST(activate(X1), len(activate(X')))
ACTIVATE(nfst(X1, X2')) -> FST(activate(X1), X2')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

ACTIVATE(nfst(X1, X2')) -> FST(activate(X1), X2')
ACTIVATE(nfst(X1, nlen(X'))) -> FST(activate(X1), len(activate(X')))
ACTIVATE(nfst(X1, nadd(X1'', X2''))) -> FST(activate(X1), add(activate(X1''), activate(X2'')))
ACTIVATE(nfst(X1, ns(X'))) -> FST(activate(X1), s(X'))
ACTIVATE(nfst(X1, nfrom(X'))) -> FST(activate(X1), from(activate(X')))
ACTIVATE(nfst(X1, nfst(X1'', X2''))) -> FST(activate(X1), fst(activate(X1''), activate(X2'')))
ACTIVATE(nfst(X1', X2)) -> FST(X1', activate(X2))
ACTIVATE(nfst(nlen(X'), X2)) -> FST(len(activate(X')), activate(X2))
ACTIVATE(nfst(nadd(X1'', X2''), X2)) -> FST(add(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nfst(ns(X'), X2)) -> FST(s(X'), activate(X2))
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(nfrom(X'), X2)) -> FST(from(activate(X')), activate(X2))
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
ACTIVATE(nfst(nfst(X1'', X2''), X2)) -> FST(fst(activate(X1''), activate(X2'')), activate(X2))
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(X)) -> LEN(activate(X))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(activate(X1), activate(X2))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nlen(X)) -> ACTIVATE(X)


Rules:


fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nadd(X1, X2)) -> ADD(activate(X1), activate(X2))
12 new Dependency Pairs are created:

ACTIVATE(nadd(nfst(X1'', X2''), X2)) -> ADD(fst(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nadd(nfrom(X'), X2)) -> ADD(from(activate(X')), activate(X2))
ACTIVATE(nadd(ns(X'), X2)) -> ADD(s(X'), activate(X2))
ACTIVATE(nadd(nadd(X1'', X2''), X2)) -> ADD(add(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nadd(nlen(X'), X2)) -> ADD(len(activate(X')), activate(X2))
ACTIVATE(nadd(X1', X2)) -> ADD(X1', activate(X2))
ACTIVATE(nadd(X1, nfst(X1'', X2''))) -> ADD(activate(X1), fst(activate(X1''), activate(X2'')))
ACTIVATE(nadd(X1, nfrom(X'))) -> ADD(activate(X1), from(activate(X')))
ACTIVATE(nadd(X1, ns(X'))) -> ADD(activate(X1), s(X'))
ACTIVATE(nadd(X1, nadd(X1'', X2''))) -> ADD(activate(X1), add(activate(X1''), activate(X2'')))
ACTIVATE(nadd(X1, nlen(X'))) -> ADD(activate(X1), len(activate(X')))
ACTIVATE(nadd(X1, X2')) -> ADD(activate(X1), X2')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Narrowing Transformation


Dependency Pairs:

ACTIVATE(nadd(X1, X2')) -> ADD(activate(X1), X2')
ACTIVATE(nadd(X1, nlen(X'))) -> ADD(activate(X1), len(activate(X')))
ACTIVATE(nadd(X1, nadd(X1'', X2''))) -> ADD(activate(X1), add(activate(X1''), activate(X2'')))
ACTIVATE(nadd(X1, ns(X'))) -> ADD(activate(X1), s(X'))
ACTIVATE(nadd(X1, nfrom(X'))) -> ADD(activate(X1), from(activate(X')))
ACTIVATE(nadd(X1, nfst(X1'', X2''))) -> ADD(activate(X1), fst(activate(X1''), activate(X2'')))
ACTIVATE(nadd(X1', X2)) -> ADD(X1', activate(X2))
ACTIVATE(nadd(nlen(X'), X2)) -> ADD(len(activate(X')), activate(X2))
ACTIVATE(nadd(nadd(X1'', X2''), X2)) -> ADD(add(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nadd(ns(X'), X2)) -> ADD(s(X'), activate(X2))
ACTIVATE(nadd(nfrom(X'), X2)) -> ADD(from(activate(X')), activate(X2))
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(nfst(X1'', X2''), X2)) -> ADD(fst(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nfst(X1, nlen(X'))) -> FST(activate(X1), len(activate(X')))
ACTIVATE(nfst(X1, nadd(X1'', X2''))) -> FST(activate(X1), add(activate(X1''), activate(X2'')))
ACTIVATE(nfst(X1, ns(X'))) -> FST(activate(X1), s(X'))
ACTIVATE(nfst(X1, nfrom(X'))) -> FST(activate(X1), from(activate(X')))
ACTIVATE(nfst(X1, nfst(X1'', X2''))) -> FST(activate(X1), fst(activate(X1''), activate(X2'')))
ACTIVATE(nfst(X1', X2)) -> FST(X1', activate(X2))
ACTIVATE(nfst(nlen(X'), X2)) -> FST(len(activate(X')), activate(X2))
ACTIVATE(nfst(nadd(X1'', X2''), X2)) -> FST(add(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nfst(ns(X'), X2)) -> FST(s(X'), activate(X2))
ACTIVATE(nfst(nfrom(X'), X2)) -> FST(from(activate(X')), activate(X2))
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(nfst(X1'', X2''), X2)) -> FST(fst(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nlen(X)) -> ACTIVATE(X)
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(X)) -> LEN(activate(X))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2')) -> FST(activate(X1), X2')


Rules:


fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nlen(X)) -> LEN(activate(X))
six new Dependency Pairs are created:

ACTIVATE(nlen(nfst(X1', X2'))) -> LEN(fst(activate(X1'), activate(X2')))
ACTIVATE(nlen(nfrom(X''))) -> LEN(from(activate(X'')))
ACTIVATE(nlen(ns(X''))) -> LEN(s(X''))
ACTIVATE(nlen(nadd(X1', X2'))) -> LEN(add(activate(X1'), activate(X2')))
ACTIVATE(nlen(nlen(X''))) -> LEN(len(activate(X'')))
ACTIVATE(nlen(X'')) -> LEN(X'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

ACTIVATE(nlen(X'')) -> LEN(X'')
ACTIVATE(nlen(nlen(X''))) -> LEN(len(activate(X'')))
ACTIVATE(nlen(nadd(X1', X2'))) -> LEN(add(activate(X1'), activate(X2')))
ACTIVATE(nlen(ns(X''))) -> LEN(s(X''))
ACTIVATE(nlen(nfrom(X''))) -> LEN(from(activate(X'')))
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(nfst(X1', X2'))) -> LEN(fst(activate(X1'), activate(X2')))
ACTIVATE(nadd(X1, nlen(X'))) -> ADD(activate(X1), len(activate(X')))
ACTIVATE(nadd(X1, nadd(X1'', X2''))) -> ADD(activate(X1), add(activate(X1''), activate(X2'')))
ACTIVATE(nadd(X1, ns(X'))) -> ADD(activate(X1), s(X'))
ACTIVATE(nadd(X1, nfrom(X'))) -> ADD(activate(X1), from(activate(X')))
ACTIVATE(nadd(X1, nfst(X1'', X2''))) -> ADD(activate(X1), fst(activate(X1''), activate(X2'')))
ACTIVATE(nadd(X1', X2)) -> ADD(X1', activate(X2))
ACTIVATE(nadd(nlen(X'), X2)) -> ADD(len(activate(X')), activate(X2))
ACTIVATE(nadd(nadd(X1'', X2''), X2)) -> ADD(add(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nadd(ns(X'), X2)) -> ADD(s(X'), activate(X2))
ACTIVATE(nadd(nfrom(X'), X2)) -> ADD(from(activate(X')), activate(X2))
ACTIVATE(nadd(nfst(X1'', X2''), X2)) -> ADD(fst(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nfst(X1, X2')) -> FST(activate(X1), X2')
ACTIVATE(nfst(X1, nlen(X'))) -> FST(activate(X1), len(activate(X')))
ACTIVATE(nfst(X1, nadd(X1'', X2''))) -> FST(activate(X1), add(activate(X1''), activate(X2'')))
ACTIVATE(nfst(X1, ns(X'))) -> FST(activate(X1), s(X'))
ACTIVATE(nfst(X1, nfrom(X'))) -> FST(activate(X1), from(activate(X')))
ACTIVATE(nfst(X1, nfst(X1'', X2''))) -> FST(activate(X1), fst(activate(X1''), activate(X2'')))
ACTIVATE(nfst(X1', X2)) -> FST(X1', activate(X2))
ACTIVATE(nfst(nlen(X'), X2)) -> FST(len(activate(X')), activate(X2))
ACTIVATE(nfst(nadd(X1'', X2''), X2)) -> FST(add(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nfst(ns(X'), X2)) -> FST(s(X'), activate(X2))
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(nfrom(X'), X2)) -> FST(from(activate(X')), activate(X2))
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
ACTIVATE(nfst(nfst(X1'', X2''), X2)) -> FST(fst(activate(X1''), activate(X2'')), activate(X2))
ACTIVATE(nlen(X)) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2')) -> ADD(activate(X1), X2')


Rules:


fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X




Termination of R could not be shown.
Duration:
0:11 minutes