Term Rewriting System R:
[N, X, Y, Z, X1, X2]
active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(terms(N)) -> CONS(recip(sqr(N)), terms(s(N)))
ACTIVE(terms(N)) -> RECIP(sqr(N))
ACTIVE(terms(N)) -> SQR(N)
ACTIVE(terms(N)) -> TERMS(s(N))
ACTIVE(terms(N)) -> S(N)
ACTIVE(sqr(s(X))) -> S(add(sqr(X), dbl(X)))
ACTIVE(sqr(s(X))) -> ADD(sqr(X), dbl(X))
ACTIVE(sqr(s(X))) -> SQR(X)
ACTIVE(sqr(s(X))) -> DBL(X)
ACTIVE(dbl(s(X))) -> S(s(dbl(X)))
ACTIVE(dbl(s(X))) -> S(dbl(X))
ACTIVE(dbl(s(X))) -> DBL(X)
ACTIVE(add(s(X), Y)) -> S(add(X, Y))
ACTIVE(add(s(X), Y)) -> ADD(X, Y)
ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z))
ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z)
ACTIVE(terms(X)) -> TERMS(active(X))
ACTIVE(terms(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(recip(X)) -> RECIP(active(X))
ACTIVE(recip(X)) -> ACTIVE(X)
ACTIVE(sqr(X)) -> SQR(active(X))
ACTIVE(sqr(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ADD(active(X1), X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ADD(X1, active(X2))
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(dbl(X)) -> DBL(active(X))
ACTIVE(dbl(X)) -> ACTIVE(X)
ACTIVE(first(X1, X2)) -> FIRST(active(X1), X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> FIRST(X1, active(X2))
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
TERMS(mark(X)) -> TERMS(X)
TERMS(ok(X)) -> TERMS(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
RECIP(mark(X)) -> RECIP(X)
RECIP(ok(X)) -> RECIP(X)
SQR(mark(X)) -> SQR(X)
SQR(ok(X)) -> SQR(X)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
ADD(mark(X1), X2) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
DBL(mark(X)) -> DBL(X)
DBL(ok(X)) -> DBL(X)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
PROPER(terms(X)) -> TERMS(proper(X))
PROPER(terms(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(recip(X)) -> RECIP(proper(X))
PROPER(recip(X)) -> PROPER(X)
PROPER(sqr(X)) -> SQR(proper(X))
PROPER(sqr(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> ADD(proper(X1), proper(X2))
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(dbl(X)) -> DBL(proper(X))
PROPER(dbl(X)) -> PROPER(X)
PROPER(first(X1, X2)) -> FIRST(proper(X1), proper(X2))
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains 11 SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
CONS(x1, x2) -> CONS(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 12
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

RECIP(ok(X)) -> RECIP(X)
RECIP(mark(X)) -> RECIP(X)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

RECIP(ok(X)) -> RECIP(X)
RECIP(mark(X)) -> RECIP(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
RECIP(x1) -> RECIP(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 13
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

SQR(ok(X)) -> SQR(X)
SQR(mark(X)) -> SQR(X)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

SQR(ok(X)) -> SQR(X)
SQR(mark(X)) -> SQR(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SQR(x1) -> SQR(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 14
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

TERMS(ok(X)) -> TERMS(X)
TERMS(mark(X)) -> TERMS(X)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

TERMS(ok(X)) -> TERMS(X)
TERMS(mark(X)) -> TERMS(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
TERMS(x1) -> TERMS(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 15
Dependency Graph
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
S(x1) -> S(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 16
Dependency Graph
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ADD(x1, x2) -> ADD(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
           →DP Problem 17
Dependency Graph
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Argument Filtering and Ordering
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

DBL(ok(X)) -> DBL(X)
DBL(mark(X)) -> DBL(X)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

DBL(ok(X)) -> DBL(X)
DBL(mark(X)) -> DBL(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
DBL(x1) -> DBL(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
           →DP Problem 18
Dependency Graph
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
FIRST(x1, x2) -> FIRST(x1, x2)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
           →DP Problem 19
Dependency Graph
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Argument Filtering and Ordering
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pairs:

ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(dbl(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(sqr(X)) -> ACTIVE(X)
ACTIVE(recip(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(terms(X)) -> ACTIVE(X)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(dbl(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(sqr(X)) -> ACTIVE(X)
ACTIVE(recip(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(terms(X)) -> ACTIVE(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ACTIVE(x1) -> ACTIVE(x1)
add(x1, x2) -> add(x1, x2)
s(x1) -> s(x1)
recip(x1) -> recip(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)
dbl(x1) -> dbl(x1)
sqr(x1) -> sqr(x1)
terms(x1) -> terms(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
           →DP Problem 20
Dependency Graph
       →DP Problem 10
AFS
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Argument Filtering and Ordering
       →DP Problem 11
Remaining


Dependency Pairs:

PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(dbl(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(sqr(X)) -> PROPER(X)
PROPER(recip(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(terms(X)) -> PROPER(X)


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(dbl(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(sqr(X)) -> PROPER(X)
PROPER(recip(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(terms(X)) -> PROPER(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
add(x1, x2) -> add(x1, x2)
recip(x1) -> recip(x1)
cons(x1, x2) -> cons(x1, x2)
first(x1, x2) -> first(x1, x2)
terms(x1) -> terms(x1)
sqr(x1) -> sqr(x1)
s(x1) -> s(x1)
dbl(x1) -> dbl(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
           →DP Problem 21
Dependency Graph
       →DP Problem 11
Remaining


Dependency Pair:


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
AFS
       →DP Problem 11
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) -> mark(0)
active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(terms(X)) -> terms(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(recip(X)) -> recip(active(X))
active(sqr(X)) -> sqr(active(X))
active(s(X)) -> s(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(dbl(X)) -> dbl(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
terms(mark(X)) -> mark(terms(X))
terms(ok(X)) -> ok(terms(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
recip(mark(X)) -> mark(recip(X))
recip(ok(X)) -> ok(recip(X))
sqr(mark(X)) -> mark(sqr(X))
sqr(ok(X)) -> ok(sqr(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(terms(X)) -> terms(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(recip(X)) -> recip(proper(X))
proper(sqr(X)) -> sqr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(dbl(X)) -> dbl(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))




Termination of R could not be shown.
Duration:
0:14 minutes