TRS
↳Dependency Pair Analysis
ACTIVE(g(X)) -> H(X)
ACTIVE(h(d)) -> G(c)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> H(proper(X))
PROPER(h(X)) -> PROPER(X)
G(ok(X)) -> G(X)
H(ok(X)) -> H(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
TRS
↳DPs
→DP Problem 1
↳Modular Removal of Rules
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
H(ok(X)) -> H(X)
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(H(x1)) = x1 POL(ok(x1)) = x1
H(ok(X)) -> H(X)
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Modular Removal of Rules
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
G(ok(X)) -> G(X)
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(G(x1)) = x1 POL(ok(x1)) = x1
G(ok(X)) -> G(X)
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳Modular Removal of Rules
→DP Problem 4
↳MRR
PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
POL(g(x1)) = x1 POL(PROPER(x1)) = x1 POL(h(x1)) = x1
PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳Modular Removal of Rules
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
POL(active(x1)) = x1 POL(proper(x1)) = x1 POL(c) = 0 POL(g(x1)) = x1 POL(d) = 0 POL(h(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = x1 POL(ok(x1)) = x1
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
→DP Problem 5
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
three new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(ok(c)) -> TOP(mark(d))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
→DP Problem 5
↳Nar
...
→DP Problem 6
↳Narrowing Transformation
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(ok(c)) -> TOP(mark(d))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(X)) -> TOP(proper(X))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
four new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(d)) -> TOP(ok(d))
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
→DP Problem 5
↳Nar
...
→DP Problem 7
↳Modular Removal of Rules
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(h(d))) -> TOP(mark(g(c)))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
POL(proper(x1)) = x1 POL(c) = 0 POL(g(x1)) = x1 POL(d) = 0 POL(h(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
→DP Problem 5
↳Nar
...
→DP Problem 8
↳Modular Removal of Rules
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(h(d))) -> TOP(mark(g(c)))
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
POL(proper(x1)) = x1 POL(c) = 0 POL(g(x1)) = x1 POL(d) = 1 POL(h(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1
TOP(ok(h(d))) -> TOP(mark(g(c)))
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
→DP Problem 5
↳Nar
...
→DP Problem 9
↳Modular Removal of Rules
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
POL(proper(x1)) = 2·x1 POL(c) = 1 POL(g(x1)) = 2·x1 POL(d) = 0 POL(h(x1)) = x1 POL(mark(x1)) = 2·x1 POL(TOP(x1)) = 2 + x1 POL(ok(x1)) = x1
proper(c) -> ok(c)
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
→DP Problem 5
↳Nar
...
→DP Problem 10
↳Modular Removal of Rules
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(d) -> ok(d)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(d) -> ok(d)
POL(proper(x1)) = 2·x1 POL(g(x1)) = 2·x1 POL(d) = 1 POL(h(x1)) = x1 POL(mark(x1)) = 2·x1 POL(TOP(x1)) = 2 + x1 POL(ok(x1)) = x1
proper(d) -> ok(d)
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
→DP Problem 5
↳Nar
...
→DP Problem 11
↳Modular Removal of Rules
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
POL(proper(x1)) = x1 POL(g(x1)) = 1 + x1 POL(h(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TRS
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳MRR
→DP Problem 4
↳MRR
→DP Problem 5
↳Nar
...
→DP Problem 12
↳Modular Removal of Rules
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
POL(proper(x1)) = x1 POL(g(x1)) = x1 POL(h(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
Termination of R successfully shown.
Duration:
0:13 minutes