Term Rewriting System R:
[X]
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(g(X)) -> H(X)
ACTIVE(h(d)) -> G(c)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> H(proper(X))
PROPER(h(X)) -> PROPER(X)
G(ok(X)) -> G(X)
H(ok(X)) -> H(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar


Dependency Pair:

H(ok(X)) -> H(X)


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

H(ok(X)) -> H(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(H(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 5
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar


Dependency Pair:


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Nar


Dependency Pair:

G(ok(X)) -> G(X)


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

G(ok(X)) -> G(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 6
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Nar


Dependency Pair:


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Nar


Dependency Pairs:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(h(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(h(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 7
Polynomial Ordering
       →DP Problem 4
Nar


Dependency Pair:

PROPER(g(X)) -> PROPER(X)


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(g(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  1 + x1  
  POL(PROPER(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 7
Polo
             ...
               →DP Problem 8
Dependency Graph
       →DP Problem 4
Nar


Dependency Pair:


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Narrowing Transformation


Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(mark(X)) -> TOP(proper(X))
four new Dependency Pairs are created:

TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(d)) -> TOP(ok(d))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Narrowing Transformation


Dependency Pairs:

TOP(mark(d)) -> TOP(ok(d))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(X)) -> TOP(active(X))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(ok(X)) -> TOP(active(X))
three new Dependency Pairs are created:

TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(ok(c)) -> TOP(mark(d))
TOP(ok(h(d))) -> TOP(mark(g(c)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Nar
             ...
               →DP Problem 10
Narrowing Transformation


Dependency Pairs:

TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(mark(g(X''))) -> TOP(g(proper(X'')))
four new Dependency Pairs are created:

TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(d))) -> TOP(g(ok(d)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Nar
             ...
               →DP Problem 11
Narrowing Transformation


Dependency Pairs:

TOP(mark(g(d))) -> TOP(g(ok(d)))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(ok(h(d))) -> TOP(mark(g(c)))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(mark(h(X''))) -> TOP(h(proper(X'')))
four new Dependency Pairs are created:

TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(d))) -> TOP(h(ok(d)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Nar
             ...
               →DP Problem 12
Polynomial Ordering


Dependency Pairs:

TOP(mark(h(d))) -> TOP(h(ok(d)))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(d))) -> TOP(g(ok(d)))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(mark(g(d))) -> TOP(g(ok(d)))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

h(ok(X)) -> ok(h(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(c)=  0  
  POL(g(x1))=  x1  
  POL(d)=  1  
  POL(h(x1))=  0  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  0  
  POL(TOP(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Nar
             ...
               →DP Problem 13
Polynomial Ordering


Dependency Pairs:

TOP(mark(h(d))) -> TOP(h(ok(d)))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(h(d))) -> TOP(mark(g(c)))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

h(ok(X)) -> ok(h(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  x1  
  POL(c)=  0  
  POL(g(x1))=  x1  
  POL(d)=  1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(TOP(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Nar
             ...
               →DP Problem 14
Polynomial Ordering


Dependency Pairs:

TOP(mark(h(d))) -> TOP(h(ok(d)))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(mark(g(c))) -> TOP(g(ok(c)))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

h(ok(X)) -> ok(h(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(c)=  1  
  POL(g(x1))=  x1  
  POL(d)=  0  
  POL(h(x1))=  0  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  0  
  POL(TOP(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Nar
             ...
               →DP Problem 15
Polynomial Ordering


Dependency Pairs:

TOP(mark(h(d))) -> TOP(h(ok(d)))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(g(X''))) -> TOP(mark(h(X'')))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(c)=  0  
  POL(g(x1))=  1  
  POL(d)=  0  
  POL(h(x1))=  0  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(TOP(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Nar
             ...
               →DP Problem 16
Polynomial Ordering


Dependency Pairs:

TOP(mark(h(d))) -> TOP(h(ok(d)))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

TOP(mark(h(d))) -> TOP(h(ok(d)))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(c)=  0  
  POL(g(x1))=  0  
  POL(d)=  0  
  POL(h(x1))=  0  
  POL(mark(x1))=  1  
  POL(ok(x1))=  0  
  POL(TOP(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Nar
           →DP Problem 9
Nar
             ...
               →DP Problem 17
Dependency Graph


Dependency Pair:


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:01 minutes