Term Rewriting System R:
[X]
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

ACTIVE(g(X)) -> H(X)
ACTIVE(h(d)) -> G(c)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> H(proper(X))
PROPER(h(X)) -> PROPER(X)
G(ok(X)) -> G(X)
H(ok(X)) -> H(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains four SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`
`       →DP Problem 4`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

H(ok(X)) -> H(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pair:

G(ok(X)) -> G(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pairs:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`
`       →DP Problem 4`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

H(ok(X)) -> H(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pair:

G(ok(X)) -> G(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pairs:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`
`       →DP Problem 4`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

H(ok(X)) -> H(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pair:

G(ok(X)) -> G(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pairs:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`
`       →DP Problem 4`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

H(ok(X)) -> H(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pair:

G(ok(X)) -> G(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pairs:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

• Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))

Rules:

active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R could not be shown.
Duration:
0:00 minutes