R
↳Dependency Pair Analysis
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Nar
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
POL(cons(x1, x2)) = x1 + x2 POL(FIRST(x1, x2)) = x2 POL(s(x1)) = 0 POL(ACTIVATE(x1)) = x1 POL(n__first(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Nar
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
three new Dependency Pairs are created:
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 4
↳Narrowing Transformation
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
two new Dependency Pairs are created:
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, nfrom(X'''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 4
↳Nar
...
→DP Problem 5
↳Narrowing Transformation
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
three new Dependency Pairs are created:
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, nfirst(0, X2''))) -> SEL(X, nil)
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
SEL(s(X), cons(Y, nfirst(X1'', X2''))) -> SEL(X, nfirst(X1'', X2''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 4
↳Nar
...
→DP Problem 6
↳Polynomial Ordering
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
POL(n__from(x1)) = 0 POL(from(x1)) = 0 POL(activate(x1)) = 0 POL(first(x1, x2)) = 0 POL(0) = 0 POL(cons(x1, x2)) = 0 POL(SEL(x1, x2)) = x1 POL(nil) = 0 POL(s(x1)) = 1 + x1 POL(n__first(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 4
↳Nar
...
→DP Problem 7
↳Dependency Graph
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X