Term Rewriting System R:
[X, Z, Y, X1, X2]
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:

Termination of R could not be shown.
Duration:
0:00 minutes