R
↳Dependency Pair Analysis
LEQ(s(X), s(Y)) -> LEQ(X, Y)
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
DIFF(X, Y) -> LEQ(X, Y)
ACTIVATE(n0) -> 0'
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(np(X)) -> P(activate(X))
ACTIVATE(np(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳Neg POLO
LEQ(s(X), s(Y)) -> LEQ(X, Y)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Negative Polynomial Order
ACTIVATE(np(X)) -> ACTIVATE(X)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
0 -> n0
s(X) -> ns(X)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
POL( ACTIVATE(x1) ) = x1
POL( ndiff(x1, x2) ) = x1 + x2 + 1
POL( np(x1) ) = x1
POL( DIFF(x1, x2) ) = x1 + x2 + 1
POL( activate(x1) ) = x1
POL( ns(x1) ) = x1
POL( IF(x1, ..., x3) ) = x2 + x3
POL( n0 ) = 0
POL( leq(x1, x2) ) = 0
POL( true ) = 0
POL( false ) = 0
POL( 0 ) = 0
POL( s(x1) ) = x1
POL( diff(x1, x2) ) = x1 + x2 + 1
POL( p(x1) ) = x1
POL( if(x1, ..., x3) ) = x2 + x3
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳Negative Polynomial Order
ACTIVATE(np(X)) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
ACTIVATE(np(X)) -> ACTIVATE(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
0 -> n0
s(X) -> ns(X)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
POL( ACTIVATE(x1) ) = x1
POL( np(x1) ) = x1 + 1
POL( IF(x1, ..., x3) ) = x2 + x3
POL( DIFF(x1, x2) ) = 0
POL( n0 ) = 0
POL( ns(x1) ) = x1
POL( ndiff(x1, x2) ) = 0
POL( leq(x1, x2) ) = 0
POL( true ) = 0
POL( false ) = 0
POL( activate(x1) ) = x1
POL( 0 ) = 0
POL( s(x1) ) = x1
POL( diff(x1, x2) ) = 0
POL( p(x1) ) = x1 + 1
POL( if(x1, ..., x3) ) = x2 + x3
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳Neg POLO
...
→DP Problem 4
↳Instantiation Transformation
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
one new Dependency Pair is created:
IF(true, X, Y) -> ACTIVATE(X)
IF(true, n0, ns(ndiff(np(X''), Y''))) -> ACTIVATE(n0)
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳Neg POLO
...
→DP Problem 5
↳Instantiation Transformation
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
one new Dependency Pair is created:
IF(false, X, Y) -> ACTIVATE(Y)
IF(false, n0, ns(ndiff(np(X''), Y''))) -> ACTIVATE(ns(ndiff(np(X''), Y'')))
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳Neg POLO
...
→DP Problem 6
↳Remaining Obligation(s)
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(false, n0, ns(ndiff(np(X''), Y''))) -> ACTIVATE(ns(ndiff(np(X''), Y'')))
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X