Term Rewriting System R:
[X, Y, X1, X2, X3]
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(leq(s(X), s(Y))) -> LEQ(X, Y)
ACTIVE(diff(X, Y)) -> IF(leq(X, Y), 0, s(diff(p(X), Y)))
ACTIVE(diff(X, Y)) -> LEQ(X, Y)
ACTIVE(diff(X, Y)) -> S(diff(p(X), Y))
ACTIVE(diff(X, Y)) -> DIFF(p(X), Y)
ACTIVE(diff(X, Y)) -> P(X)
ACTIVE(p(X)) -> P(active(X))
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(leq(X1, X2)) -> LEQ(active(X1), X2)
ACTIVE(leq(X1, X2)) -> ACTIVE(X1)
ACTIVE(leq(X1, X2)) -> LEQ(X1, active(X2))
ACTIVE(leq(X1, X2)) -> ACTIVE(X2)
ACTIVE(if(X1, X2, X3)) -> IF(active(X1), X2, X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(diff(X1, X2)) -> DIFF(active(X1), X2)
ACTIVE(diff(X1, X2)) -> ACTIVE(X1)
ACTIVE(diff(X1, X2)) -> DIFF(X1, active(X2))
ACTIVE(diff(X1, X2)) -> ACTIVE(X2)
P(mark(X)) -> P(X)
P(ok(X)) -> P(X)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
LEQ(mark(X1), X2) -> LEQ(X1, X2)
LEQ(X1, mark(X2)) -> LEQ(X1, X2)
LEQ(ok(X1), ok(X2)) -> LEQ(X1, X2)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
DIFF(mark(X1), X2) -> DIFF(X1, X2)
DIFF(X1, mark(X2)) -> DIFF(X1, X2)
DIFF(ok(X1), ok(X2)) -> DIFF(X1, X2)
PROPER(p(X)) -> P(proper(X))
PROPER(p(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(leq(X1, X2)) -> LEQ(proper(X1), proper(X2))
PROPER(leq(X1, X2)) -> PROPER(X1)
PROPER(leq(X1, X2)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> IF(proper(X1), proper(X2), proper(X3))
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(diff(X1, X2)) -> DIFF(proper(X1), proper(X2))
PROPER(diff(X1, X2)) -> PROPER(X1)
PROPER(diff(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
Furthermore, R contains eight SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
Dependency Pairs:
LEQ(ok(X1), ok(X2)) -> LEQ(X1, X2)
LEQ(X1, mark(X2)) -> LEQ(X1, X2)
LEQ(mark(X1), X2) -> LEQ(X1, X2)
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- LEQ(ok(X1), ok(X2)) -> LEQ(X1, X2)
- LEQ(X1, mark(X2)) -> LEQ(X1, X2)
- LEQ(mark(X1), X2) -> LEQ(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
Dependency Pairs:
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
- IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
and get the following Size-Change Graph(s): {2, 1} | , | {2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
3 | > | 3 |
|
{2, 1} | , | {2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
3 | = | 3 |
|
which lead(s) to this/these maximal multigraph(s): {2, 1} | , | {2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
3 | = | 3 |
|
{2, 1} | , | {2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
3 | > | 3 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
Dependency Pairs:
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- S(ok(X)) -> S(X)
- S(mark(X)) -> S(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
Dependency Pairs:
DIFF(ok(X1), ok(X2)) -> DIFF(X1, X2)
DIFF(X1, mark(X2)) -> DIFF(X1, X2)
DIFF(mark(X1), X2) -> DIFF(X1, X2)
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- DIFF(ok(X1), ok(X2)) -> DIFF(X1, X2)
- DIFF(X1, mark(X2)) -> DIFF(X1, X2)
- DIFF(mark(X1), X2) -> DIFF(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
Dependency Pairs:
P(ok(X)) -> P(X)
P(mark(X)) -> P(X)
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- P(ok(X)) -> P(X)
- P(mark(X)) -> P(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳Size-Change Principle
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
Dependency Pairs:
ACTIVE(diff(X1, X2)) -> ACTIVE(X2)
ACTIVE(diff(X1, X2)) -> ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(leq(X1, X2)) -> ACTIVE(X2)
ACTIVE(leq(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(p(X)) -> ACTIVE(X)
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ACTIVE(diff(X1, X2)) -> ACTIVE(X2)
- ACTIVE(diff(X1, X2)) -> ACTIVE(X1)
- ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
- ACTIVE(leq(X1, X2)) -> ACTIVE(X2)
- ACTIVE(leq(X1, X2)) -> ACTIVE(X1)
- ACTIVE(s(X)) -> ACTIVE(X)
- ACTIVE(p(X)) -> ACTIVE(X)
and get the following Size-Change Graph(s): {7, 6, 5, 4, 3, 2, 1} | , | {7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {7, 6, 5, 4, 3, 2, 1} | , | {7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
if(x1, x2, x3) -> if(x1, x2, x3)
leq(x1, x2) -> leq(x1, x2)
s(x1) -> s(x1)
diff(x1, x2) -> diff(x1, x2)
p(x1) -> p(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳Size-Change Principle
→DP Problem 8
↳Nar
Dependency Pairs:
PROPER(diff(X1, X2)) -> PROPER(X2)
PROPER(diff(X1, X2)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(leq(X1, X2)) -> PROPER(X2)
PROPER(leq(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(p(X)) -> PROPER(X)
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- PROPER(diff(X1, X2)) -> PROPER(X2)
- PROPER(diff(X1, X2)) -> PROPER(X1)
- PROPER(if(X1, X2, X3)) -> PROPER(X3)
- PROPER(if(X1, X2, X3)) -> PROPER(X2)
- PROPER(if(X1, X2, X3)) -> PROPER(X1)
- PROPER(leq(X1, X2)) -> PROPER(X2)
- PROPER(leq(X1, X2)) -> PROPER(X1)
- PROPER(s(X)) -> PROPER(X)
- PROPER(p(X)) -> PROPER(X)
and get the following Size-Change Graph(s): {9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
if(x1, x2, x3) -> if(x1, x2, x3)
leq(x1, x2) -> leq(x1, x2)
s(x1) -> s(x1)
diff(x1, x2) -> diff(x1, x2)
p(x1) -> p(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Narrowing Transformation
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule
TOP(mark(X)) -> TOP(proper(X))
eight new Dependency Pairs
are created:
TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(leq(X1', X2'))) -> TOP(leq(proper(X1'), proper(X2')))
TOP(mark(true)) -> TOP(ok(true))
TOP(mark(false)) -> TOP(ok(false))
TOP(mark(if(X1', X2', X3'))) -> TOP(if(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(diff(X1', X2'))) -> TOP(diff(proper(X1'), proper(X2')))
The transformation is resulting in one new DP problem:
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
→DP Problem 9
↳Narrowing Transformation
Dependency Pairs:
TOP(mark(diff(X1', X2'))) -> TOP(diff(proper(X1'), proper(X2')))
TOP(mark(if(X1', X2', X3'))) -> TOP(if(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(false)) -> TOP(ok(false))
TOP(mark(true)) -> TOP(ok(true))
TOP(mark(leq(X1', X2'))) -> TOP(leq(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(ok(X)) -> TOP(active(X))
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule
TOP(ok(X)) -> TOP(active(X))
15 new Dependency Pairs
are created:
TOP(ok(p(0))) -> TOP(mark(0))
TOP(ok(p(s(X'')))) -> TOP(mark(X''))
TOP(ok(leq(0, Y'))) -> TOP(mark(true))
TOP(ok(leq(s(X''), 0))) -> TOP(mark(false))
TOP(ok(leq(s(X''), s(Y')))) -> TOP(mark(leq(X'', Y')))
TOP(ok(if(true, X'', Y'))) -> TOP(mark(X''))
TOP(ok(if(false, X'', Y'))) -> TOP(mark(Y'))
TOP(ok(diff(X'', Y'))) -> TOP(mark(if(leq(X'', Y'), 0, s(diff(p(X''), Y')))))
TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(leq(X1', X2'))) -> TOP(leq(active(X1'), X2'))
TOP(ok(leq(X1', X2'))) -> TOP(leq(X1', active(X2')))
TOP(ok(if(X1', X2', X3'))) -> TOP(if(active(X1'), X2', X3'))
TOP(ok(diff(X1', X2'))) -> TOP(diff(active(X1'), X2'))
TOP(ok(diff(X1', X2'))) -> TOP(diff(X1', active(X2')))
The transformation is resulting in one new DP problem:
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 10
↳Negative Polynomial Order
Dependency Pairs:
TOP(ok(diff(X1', X2'))) -> TOP(diff(X1', active(X2')))
TOP(ok(diff(X1', X2'))) -> TOP(diff(active(X1'), X2'))
TOP(ok(if(X1', X2', X3'))) -> TOP(if(active(X1'), X2', X3'))
TOP(ok(leq(X1', X2'))) -> TOP(leq(X1', active(X2')))
TOP(ok(leq(X1', X2'))) -> TOP(leq(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(ok(diff(X'', Y'))) -> TOP(mark(if(leq(X'', Y'), 0, s(diff(p(X''), Y')))))
TOP(ok(if(false, X'', Y'))) -> TOP(mark(Y'))
TOP(ok(if(true, X'', Y'))) -> TOP(mark(X''))
TOP(ok(leq(s(X''), s(Y')))) -> TOP(mark(leq(X'', Y')))
TOP(ok(p(s(X'')))) -> TOP(mark(X''))
TOP(mark(if(X1', X2', X3'))) -> TOP(if(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(leq(X1', X2'))) -> TOP(leq(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(mark(diff(X1', X2'))) -> TOP(diff(proper(X1'), proper(X2')))
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The following Dependency Pair can be strictly oriented using the given order.
TOP(ok(p(s(X'')))) -> TOP(mark(X''))
Moreover, the following usable rules (regarding the implicit AFS) are oriented.
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
Used ordering:
Polynomial Order with Interpretation:
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1
POL( p(x1) ) = x1 + 1
POL( s(x1) ) = x1
POL( mark(x1) ) = x1
POL( if(x1, ..., x3) ) = x2 + x3
POL( proper(x1) ) = x1
POL( leq(x1, x2) ) = 0
POL( active(x1) ) = x1
POL( diff(x1, x2) ) = 0
POL( 0 ) = 0
POL( true ) = 0
POL( false ) = 0
This results in one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 11
↳Remaining Obligation(s)
The following remains to be proven:
Dependency Pairs:
TOP(ok(diff(X1', X2'))) -> TOP(diff(X1', active(X2')))
TOP(ok(diff(X1', X2'))) -> TOP(diff(active(X1'), X2'))
TOP(ok(if(X1', X2', X3'))) -> TOP(if(active(X1'), X2', X3'))
TOP(ok(leq(X1', X2'))) -> TOP(leq(X1', active(X2')))
TOP(ok(leq(X1', X2'))) -> TOP(leq(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(ok(diff(X'', Y'))) -> TOP(mark(if(leq(X'', Y'), 0, s(diff(p(X''), Y')))))
TOP(ok(if(false, X'', Y'))) -> TOP(mark(Y'))
TOP(ok(if(true, X'', Y'))) -> TOP(mark(X''))
TOP(ok(leq(s(X''), s(Y')))) -> TOP(mark(leq(X'', Y')))
TOP(mark(if(X1', X2', X3'))) -> TOP(if(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(leq(X1', X2'))) -> TOP(leq(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(mark(diff(X1', X2'))) -> TOP(diff(proper(X1'), proper(X2')))
Rules:
active(p(0)) -> mark(0)
active(p(s(X))) -> mark(X)
active(leq(0, Y)) -> mark(true)
active(leq(s(X), 0)) -> mark(false)
active(leq(s(X), s(Y))) -> mark(leq(X, Y))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) -> p(active(X))
active(s(X)) -> s(active(X))
active(leq(X1, X2)) -> leq(active(X1), X2)
active(leq(X1, X2)) -> leq(X1, active(X2))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(diff(X1, X2)) -> diff(active(X1), X2)
active(diff(X1, X2)) -> diff(X1, active(X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
leq(mark(X1), X2) -> mark(leq(X1, X2))
leq(X1, mark(X2)) -> mark(leq(X1, X2))
leq(ok(X1), ok(X2)) -> ok(leq(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
diff(mark(X1), X2) -> mark(diff(X1, X2))
diff(X1, mark(X2)) -> mark(diff(X1, X2))
diff(ok(X1), ok(X2)) -> ok(diff(X1, X2))
proper(p(X)) -> p(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(leq(X1, X2)) -> leq(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) -> diff(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The Proof could not be continued due to a Timeout.
Termination of R could not be shown.
Duration:
1:00 minutes