R
↳Dependency Pair Analysis
EQ(ns(X), ns(Y)) -> EQ(activate(X), activate(Y))
EQ(ns(X), ns(Y)) -> ACTIVATE(X)
EQ(ns(X), ns(Y)) -> ACTIVATE(Y)
INF(X) -> S(X)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(Y)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(X)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(L)
LENGTH(nil) -> 0'
LENGTH(cons(X, L)) -> S(nlength(activate(L)))
LENGTH(cons(X, L)) -> ACTIVATE(L)
ACTIVATE(n0) -> 0'
ACTIVATE(ns(X)) -> S(X)
ACTIVATE(ninf(X)) -> INF(X)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
ACTIVATE(nlength(X)) -> LENGTH(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Nar
TAKE(s(X), cons(Y, L)) -> ACTIVATE(L)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(X)
LENGTH(cons(X, L)) -> ACTIVATE(L)
ACTIVATE(nlength(X)) -> LENGTH(X)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(Y)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
eq(n0, n0) -> true
eq(ns(X), ns(Y)) -> eq(activate(X), activate(Y))
eq(X, Y) -> false
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
ACTIVATE(nlength(X)) -> LENGTH(X)
POL(n__length(x1)) = 1 + x1 POL(cons(x1, x2)) = x1 + x2 POL(n__take(x1, x2)) = x1 + x2 POL(TAKE(x1, x2)) = x1 + x2 POL(s(x1)) = x1 POL(ACTIVATE(x1)) = x1 POL(LENGTH(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Nar
TAKE(s(X), cons(Y, L)) -> ACTIVATE(L)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(X)
LENGTH(cons(X, L)) -> ACTIVATE(L)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(Y)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
eq(n0, n0) -> true
eq(ns(X), ns(Y)) -> eq(activate(X), activate(Y))
eq(X, Y) -> false
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳DGraph
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Nar
TAKE(s(X), cons(Y, L)) -> ACTIVATE(X)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(Y)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(L)
eq(n0, n0) -> true
eq(ns(X), ns(Y)) -> eq(activate(X), activate(Y))
eq(X, Y) -> false
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
POL(cons(x1, x2)) = x1 + x2 POL(n__take(x1, x2)) = 1 + x1 + x2 POL(TAKE(x1, x2)) = x1 + x2 POL(s(x1)) = x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳DGraph
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
TAKE(s(X), cons(Y, L)) -> ACTIVATE(X)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(Y)
TAKE(s(X), cons(Y, L)) -> ACTIVATE(L)
eq(n0, n0) -> true
eq(ns(X), ns(Y)) -> eq(activate(X), activate(Y))
eq(X, Y) -> false
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
EQ(ns(X), ns(Y)) -> EQ(activate(X), activate(Y))
eq(n0, n0) -> true
eq(ns(X), ns(Y)) -> eq(activate(X), activate(Y))
eq(X, Y) -> false
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
12 new Dependency Pairs are created:
EQ(ns(X), ns(Y)) -> EQ(activate(X), activate(Y))
EQ(ns(n0), ns(Y)) -> EQ(0, activate(Y))
EQ(ns(ns(X'')), ns(Y)) -> EQ(s(X''), activate(Y))
EQ(ns(ninf(X'')), ns(Y)) -> EQ(inf(X''), activate(Y))
EQ(ns(ntake(X1', X2')), ns(Y)) -> EQ(take(X1', X2'), activate(Y))
EQ(ns(nlength(X'')), ns(Y)) -> EQ(length(X''), activate(Y))
EQ(ns(X''), ns(Y)) -> EQ(X'', activate(Y))
EQ(ns(X), ns(n0)) -> EQ(activate(X), 0)
EQ(ns(X), ns(ns(X''))) -> EQ(activate(X), s(X''))
EQ(ns(X), ns(ninf(X''))) -> EQ(activate(X), inf(X''))
EQ(ns(X), ns(ntake(X1', X2'))) -> EQ(activate(X), take(X1', X2'))
EQ(ns(X), ns(nlength(X''))) -> EQ(activate(X), length(X''))
EQ(ns(X), ns(Y')) -> EQ(activate(X), Y')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Polynomial Ordering
EQ(ns(X), ns(Y')) -> EQ(activate(X), Y')
EQ(ns(X), ns(nlength(X''))) -> EQ(activate(X), length(X''))
EQ(ns(X), ns(ntake(X1', X2'))) -> EQ(activate(X), take(X1', X2'))
EQ(ns(X), ns(ninf(X''))) -> EQ(activate(X), inf(X''))
EQ(ns(X), ns(ns(X''))) -> EQ(activate(X), s(X''))
EQ(ns(X), ns(n0)) -> EQ(activate(X), 0)
EQ(ns(X''), ns(Y)) -> EQ(X'', activate(Y))
EQ(ns(nlength(X'')), ns(Y)) -> EQ(length(X''), activate(Y))
EQ(ns(ntake(X1', X2')), ns(Y)) -> EQ(take(X1', X2'), activate(Y))
EQ(ns(ninf(X'')), ns(Y)) -> EQ(inf(X''), activate(Y))
EQ(ns(ns(X'')), ns(Y)) -> EQ(s(X''), activate(Y))
EQ(ns(n0), ns(Y)) -> EQ(0, activate(Y))
eq(n0, n0) -> true
eq(ns(X), ns(Y)) -> eq(activate(X), activate(Y))
eq(X, Y) -> false
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
EQ(ns(X''), ns(Y)) -> EQ(X'', activate(Y))
EQ(ns(ntake(X1', X2')), ns(Y)) -> EQ(take(X1', X2'), activate(Y))
EQ(ns(ninf(X'')), ns(Y)) -> EQ(inf(X''), activate(Y))
EQ(ns(ns(X'')), ns(Y)) -> EQ(s(X''), activate(Y))
EQ(ns(n0), ns(Y)) -> EQ(0, activate(Y))
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
s(X) -> ns(X)
0 -> n0
POL(activate(x1)) = 1 + x1 POL(n__length(x1)) = 0 POL(EQ(x1, x2)) = 1 + x1 POL(n__take(x1, x2)) = 0 POL(take(x1, x2)) = 0 POL(n__s(x1)) = 1 + x1 POL(n__inf(x1)) = 0 POL(0) = 0 POL(cons(x1, x2)) = 0 POL(inf(x1)) = 0 POL(nil) = 0 POL(n__0) = 0 POL(s(x1)) = 1 + x1 POL(length(x1)) = 1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 7
↳Polynomial Ordering
EQ(ns(X), ns(Y')) -> EQ(activate(X), Y')
EQ(ns(X), ns(nlength(X''))) -> EQ(activate(X), length(X''))
EQ(ns(X), ns(ntake(X1', X2'))) -> EQ(activate(X), take(X1', X2'))
EQ(ns(X), ns(ninf(X''))) -> EQ(activate(X), inf(X''))
EQ(ns(X), ns(ns(X''))) -> EQ(activate(X), s(X''))
EQ(ns(X), ns(n0)) -> EQ(activate(X), 0)
EQ(ns(nlength(X'')), ns(Y)) -> EQ(length(X''), activate(Y))
eq(n0, n0) -> true
eq(ns(X), ns(Y)) -> eq(activate(X), activate(Y))
eq(X, Y) -> false
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
EQ(ns(X), ns(Y')) -> EQ(activate(X), Y')
EQ(ns(X), ns(ntake(X1', X2'))) -> EQ(activate(X), take(X1', X2'))
EQ(ns(X), ns(ninf(X''))) -> EQ(activate(X), inf(X''))
EQ(ns(X), ns(ns(X''))) -> EQ(activate(X), s(X''))
EQ(ns(X), ns(n0)) -> EQ(activate(X), 0)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
s(X) -> ns(X)
0 -> n0
POL(activate(x1)) = 1 + x1 POL(n__length(x1)) = 0 POL(EQ(x1, x2)) = 1 + x2 POL(n__take(x1, x2)) = 0 POL(take(x1, x2)) = 0 POL(n__s(x1)) = 1 + x1 POL(n__inf(x1)) = 0 POL(0) = 0 POL(cons(x1, x2)) = 0 POL(inf(x1)) = 0 POL(nil) = 0 POL(n__0) = 0 POL(s(x1)) = 1 + x1 POL(length(x1)) = 1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 8
↳Remaining Obligation(s)
EQ(ns(X), ns(nlength(X''))) -> EQ(activate(X), length(X''))
EQ(ns(nlength(X'')), ns(Y)) -> EQ(length(X''), activate(Y))
eq(n0, n0) -> true
eq(ns(X), ns(Y)) -> eq(activate(X), activate(Y))
eq(X, Y) -> false
inf(X) -> cons(X, ninf(s(X)))
inf(X) -> ninf(X)
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(activate(Y), ntake(activate(X), activate(L)))
take(X1, X2) -> ntake(X1, X2)
length(nil) -> 0
length(cons(X, L)) -> s(nlength(activate(L)))
length(X) -> nlength(X)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(X)
activate(ninf(X)) -> inf(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(nlength(X)) -> length(X)
activate(X) -> X