Term Rewriting System R:
[X, Z, N, Y, X1, X2]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FROM(X) -> CONS(X, nfrom(s(X)))
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> ACTIVATE(Y)
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> ACTIVATE(Z)
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> ACTIVATE(Y)
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> ACTIVATE(Z)
PI(X) -> 2NDSPOS(X, from(0))
PI(X) -> FROM(0)
PLUS(s(X), Y) -> PLUS(X, Y)
TIMES(s(X), Y) -> PLUS(Y, times(X, Y))
TIMES(s(X), Y) -> TIMES(X, Y)
SQUARE(X) -> TIMES(X, X)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ncons(X1, X2)) -> CONS(X1, X2)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pairs:

2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> 2NDSNEG(N, activate(Z))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X





The following dependency pairs can be strictly oriented:

2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> 2NDSNEG(N, activate(Z))


The following rules can be oriented:

activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{2NDSNEG, 2NDSPOS} > {activate, from} > nfrom > rnil
{2NDSNEG, 2NDSPOS} > {activate, from} > {ncons, cons} > rnil
{2NDSNEG, 2NDSPOS} > {activate, from} > s > rnil
{0, pi} > {2ndspos, 2ndsneg} > {activate, from} > nfrom > rnil
{0, pi} > {2ndspos, 2ndsneg} > {activate, from} > {ncons, cons} > rnil
{0, pi} > {2ndspos, 2ndsneg} > {activate, from} > s > rnil
{0, pi} > {2ndspos, 2ndsneg} > negrecip > rnil
{0, pi} > {2ndspos, 2ndsneg} > rcons > rnil
{0, pi} > {2ndspos, 2ndsneg} > posrecip > rnil
square > times > plus > s > rnil

resulting in one new DP problem.
Used Argument Filtering System:
2NDSPOS(x1, x2) -> 2NDSPOS(x1, x2)
2NDSNEG(x1, x2) -> 2NDSNEG(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
activate(x1) -> activate(x1)
ncons(x1, x2) -> ncons(x1, x2)
nfrom(x1) -> nfrom(x1)
from(x1) -> from(x1)
2ndspos(x1, x2) -> 2ndspos(x1, x2)
rcons(x1, x2) -> rcons(x1, x2)
posrecip(x1) -> posrecip(x1)
2ndsneg(x1, x2) -> 2ndsneg(x1, x2)
negrecip(x1) -> negrecip(x1)
pi(x1) -> pi(x1)
plus(x1, x2) -> plus(x1, x2)
times(x1, x2) -> times(x1, x2)
square(x1) -> square(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS


Dependency Pair:

PLUS(s(X), Y) -> PLUS(X, Y)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X





The following dependency pair can be strictly oriented:

PLUS(s(X), Y) -> PLUS(X, Y)


The following rules can be oriented:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{0, pi} > {2ndspos, rnil, 2ndsneg} > activate > from > nfrom
{0, pi} > {2ndspos, rnil, 2ndsneg} > activate > from > cons > ncons
{0, pi} > {2ndspos, rnil, 2ndsneg} > activate > from > s
{0, pi} > {2ndspos, rnil, 2ndsneg} > negrecip
{0, pi} > {2ndspos, rnil, 2ndsneg} > rcons
{0, pi} > {2ndspos, rnil, 2ndsneg} > posrecip
square > times > plus > s

resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
from(x1) -> from(x1)
cons(x1, x2) -> cons(x1, x2)
nfrom(x1) -> nfrom(x1)
2ndspos(x1, x2) -> 2ndspos(x1, x2)
ncons(x1, x2) -> ncons(x1, x2)
rcons(x1, x2) -> rcons(x1, x2)
posrecip(x1) -> posrecip(x1)
2ndsneg(x1, x2) -> 2ndsneg(x1, x2)
activate(x1) -> activate(x1)
negrecip(x1) -> negrecip(x1)
pi(x1) -> pi(x1)
plus(x1, x2) -> plus(x1, x2)
times(x1, x2) -> times(x1, x2)
square(x1) -> square(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
AFS


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering


Dependency Pair:

TIMES(s(X), Y) -> TIMES(X, Y)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X





The following dependency pair can be strictly oriented:

TIMES(s(X), Y) -> TIMES(X, Y)


The following rules can be oriented:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{0, pi} > {2ndspos, 2ndsneg} > {activate, from} > nfrom
{0, pi} > {2ndspos, 2ndsneg} > {activate, from} > cons > ncons
{0, pi} > {2ndspos, 2ndsneg} > {activate, from} > s
{0, pi} > {2ndspos, 2ndsneg} > negrecip
{0, pi} > {2ndspos, 2ndsneg} > rcons
{0, pi} > {2ndspos, 2ndsneg} > posrecip
{0, pi} > rnil
square > times > plus > s

resulting in one new DP problem.
Used Argument Filtering System:
TIMES(x1, x2) -> TIMES(x1, x2)
s(x1) -> s(x1)
from(x1) -> from(x1)
cons(x1, x2) -> cons(x1, x2)
nfrom(x1) -> nfrom(x1)
2ndspos(x1, x2) -> 2ndspos(x1, x2)
ncons(x1, x2) -> ncons(x1, x2)
rcons(x1, x2) -> rcons(x1, x2)
posrecip(x1) -> posrecip(x1)
2ndsneg(x1, x2) -> 2ndsneg(x1, x2)
activate(x1) -> activate(x1)
negrecip(x1) -> negrecip(x1)
pi(x1) -> pi(x1)
plus(x1, x2) -> plus(x1, x2)
times(x1, x2) -> times(x1, x2)
square(x1) -> square(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:05 minutes