R
↳Dependency Pair Analysis
FROM(X) -> CONS(X, nfrom(ns(X)))
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> ACTIVATE(Y)
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> ACTIVATE(Z)
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> ACTIVATE(Y)
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> ACTIVATE(Z)
PI(X) -> 2NDSPOS(X, from(0))
PI(X) -> FROM(0)
PLUS(s(X), Y) -> S(plus(X, Y))
PLUS(s(X), Y) -> PLUS(X, Y)
TIMES(s(X), Y) -> PLUS(Y, times(X, Y))
TIMES(s(X), Y) -> TIMES(X, Y)
SQUARE(X) -> TIMES(X, X)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(ncons(X1, X2)) -> CONS(activate(X1), X2)
ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Polo
ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
POL(n__cons(x1, x2)) = 1 + x1 POL(n__from(x1)) = x1 POL(n__s(x1)) = x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Polo
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
ACTIVATE(ns(X)) -> ACTIVATE(X)
POL(n__from(x1)) = x1 POL(n__s(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Polo
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Polo
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
POL(n__from(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Polo
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Polo
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Polo
PLUS(s(X), Y) -> PLUS(X, Y)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
PLUS(s(X), Y) -> PLUS(X, Y)
POL(PLUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Polo
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Narrowing Transformation
→DP Problem 4
↳Polo
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> 2NDSNEG(N, activate(Z))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
four new Dependency Pairs are created:
2NDSPOS(s(N), cons(X, ncons(Y, Z))) -> 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSNEG(N, cons(activate(X1'), X2'))
2NDSPOS(s(N), cons(X, ncons(Y, Z'))) -> 2NDSNEG(N, Z')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 9
↳Narrowing Transformation
→DP Problem 4
↳Polo
2NDSPOS(s(N), cons(X, ncons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSNEG(N, cons(activate(X1'), X2'))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> 2NDSPOS(N, activate(Z))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
four new Dependency Pairs are created:
2NDSNEG(s(N), cons(X, ncons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSPOS(N, cons(activate(X1'), X2'))
2NDSNEG(s(N), cons(X, ncons(Y, Z'))) -> 2NDSPOS(N, Z')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 10
↳Narrowing Transformation
→DP Problem 4
↳Polo
2NDSNEG(s(N), cons(X, ncons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSPOS(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSNEG(N, cons(activate(X1'), X2'))
2NDSNEG(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSPOS(N, cons(activate(X1'), X2'))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, Z'))) -> 2NDSNEG(N, Z')
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
six new Dependency Pairs are created:
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, nfrom(activate(X''')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSNEG(N, from(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
→DP Problem 4
↳Polo
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSNEG(N, from(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSPOS(N, cons(activate(X1'), X2'))
2NDSPOS(s(N), cons(X, ncons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSNEG(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSNEG(N, cons(activate(X1'), X2'))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, ncons(Y, Z'))) -> 2NDSPOS(N, Z')
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
five new Dependency Pairs are created:
2NDSPOS(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSNEG(N, ns(activate(X''')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ncons(X1', X2'))))) -> 2NDSNEG(N, s(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 12
↳Narrowing Transformation
→DP Problem 4
↳Polo
2NDSPOS(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ncons(X1', X2'))))) -> 2NDSNEG(N, s(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSNEG(N, from(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSPOS(N, cons(activate(X1'), X2'))
2NDSPOS(s(N), cons(X, ncons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSNEG(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSNEG(N, cons(activate(X1'), X2'))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
six new Dependency Pairs are created:
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, nfrom(activate(X''')))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSPOS(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSPOS(N, from(s(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSPOS(N, from(cons(activate(X1'), X2')))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, from(X'''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 13
↳Narrowing Transformation
→DP Problem 4
↳Polo
2NDSPOS(s(N), cons(X, ncons(Y, ns(ncons(X1', X2'))))) -> 2NDSNEG(N, s(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, from(X'''))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSPOS(N, from(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSNEG(N, from(cons(activate(X1'), X2')))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSPOS(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSPOS(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons(X, ncons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSPOS(s(N), cons(X, ncons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSNEG(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSPOS(N, cons(activate(X1'), X2'))
2NDSPOS(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSNEG(N, cons(activate(X1'), X2'))
2NDSNEG(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
five new Dependency Pairs are created:
2NDSNEG(s(N), cons(X, ncons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSPOS(N, ns(activate(X''')))
2NDSNEG(s(N), cons(X, ncons(Y, ns(nfrom(X'''))))) -> 2NDSPOS(N, s(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, ns(ns(X'''))))) -> 2NDSPOS(N, s(s(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, ns(ncons(X1', X2'))))) -> 2NDSPOS(N, s(cons(activate(X1'), X2')))
2NDSNEG(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSPOS(N, s(X'''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 14
↳Polynomial Ordering
→DP Problem 4
↳Polo
2NDSNEG(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSPOS(N, s(X'''))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSNEG(s(N), cons(X, ncons(Y, ns(ncons(X1', X2'))))) -> 2NDSPOS(N, s(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, ns(ns(X'''))))) -> 2NDSPOS(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, ns(nfrom(X'''))))) -> 2NDSPOS(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, from(X'''))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSNEG(N, from(cons(activate(X1'), X2')))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSPOS(N, from(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSPOS(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSPOS(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, ncons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSNEG(s(N), cons(X, ncons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSPOS(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSNEG(N, cons(activate(X1'), X2'))
2NDSNEG(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSPOS(N, cons(activate(X1'), X2'))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ncons(X1', X2'))))) -> 2NDSNEG(N, s(cons(activate(X1'), X2')))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
2NDSNEG(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSPOS(N, s(X'''))
2NDSPOS(s(N), cons(X, ncons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSNEG(s(N), cons(X, ncons(Y, ns(ncons(X1', X2'))))) -> 2NDSPOS(N, s(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, ns(ns(X'''))))) -> 2NDSPOS(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, ns(nfrom(X'''))))) -> 2NDSPOS(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, from(X'''))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSNEG(N, from(cons(activate(X1'), X2')))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(ncons(X1', X2'))))) -> 2NDSPOS(N, from(cons(activate(X1'), X2')))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(ns(X'''))))) -> 2NDSPOS(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(nfrom(X'''))))) -> 2NDSPOS(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons(X, ncons(Y, nfrom(X''')))) -> 2NDSPOS(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, ncons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSNEG(s(N), cons(X, ncons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSPOS(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSNEG(N, cons(activate(X1'), X2'))
2NDSNEG(s(N), cons(X, ncons(Y, ncons(X1', X2')))) -> 2NDSPOS(N, cons(activate(X1'), X2'))
2NDSPOS(s(N), cons(X, ncons(Y, ns(ncons(X1', X2'))))) -> 2NDSNEG(N, s(cons(activate(X1'), X2')))
POL(n__from(x1)) = 0 POL(from(x1)) = 0 POL(n__cons(x1, x2)) = 0 POL(activate(x1)) = 0 POL(cons(x1, x2)) = 0 POL(2NDSNEG(x1, x2)) = x1 POL(n__s(x1)) = 0 POL(s(x1)) = 1 + x1 POL(2NDSPOS(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 15
↳Dependency Graph
→DP Problem 4
↳Polo
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Polynomial Ordering
TIMES(s(X), Y) -> TIMES(X, Y)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
TIMES(s(X), Y) -> TIMES(X, Y)
POL(TIMES(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Polo
→DP Problem 16
↳Dependency Graph
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X