Term Rewriting System R:
[X, Y, X1, X2, Z]
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
AND(true, X) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
ADD(0, X) -> ACTIVATE(X)
ADD(s(X), Y) -> S(nadd(activate(X), activate(Y)))
ADD(s(X), Y) -> ACTIVATE(X)
ADD(s(X), Y) -> ACTIVATE(Y)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FROM(X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ns(X)) -> S(X)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
Dependency Pairs:
ADD(s(X), Y) -> ACTIVATE(Y)
ADD(s(X), Y) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FROM(X) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> FROM(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ADD(0, X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
Rules:
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
We number the DPs as follows:
- ADD(s(X), Y) -> ACTIVATE(Y)
- ADD(s(X), Y) -> ACTIVATE(X)
- FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
- FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
- FROM(X) -> ACTIVATE(X)
- ACTIVATE(nfrom(X)) -> FROM(X)
- FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
- ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
- ADD(0, X) -> ACTIVATE(X)
- ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
nfrom(x1) -> nfrom(x1)
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
nadd(x1, x2) -> nadd(x1, x2)
nfirst(x1, x2) -> nfirst(x1, x2)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:01 minutes