R
↳Dependency Pair Analysis
AND(true, X) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
ADD(0, X) -> ACTIVATE(X)
ADD(s(X), Y) -> S(nadd(activate(X), activate(Y)))
ADD(s(X), Y) -> ACTIVATE(X)
ADD(s(X), Y) -> ACTIVATE(Y)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FROM(X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ns(X)) -> S(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
ADD(s(X), Y) -> ACTIVATE(Y)
ADD(s(X), Y) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FROM(X) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> FROM(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ADD(0, X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
ACTIVATE(nfrom(X)) -> FROM(X)
POL(FROM(x1)) = x1 POL(n__from(x1)) = 1 + x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(FIRST(x1, x2)) = x1 + x2 POL(s(x1)) = x1 POL(ACTIVATE(x1)) = x1 POL(ADD(x1, x2)) = x1 + x2 POL(n__add(x1, x2)) = x1 + x2 POL(n__first(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
ADD(s(X), Y) -> ACTIVATE(Y)
ADD(s(X), Y) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FROM(X) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ADD(0, X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
ADD(s(X), Y) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ADD(0, X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ADD(s(X), Y) -> ACTIVATE(Y)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(FIRST(x1, x2)) = x1 + x2 POL(s(x1)) = x1 POL(ACTIVATE(x1)) = x1 POL(ADD(x1, x2)) = x1 + x2 POL(n__add(x1, x2)) = x1 + x2 POL(n__first(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Dependency Graph
ADD(s(X), Y) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
ADD(0, X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ADD(s(X), Y) -> ACTIVATE(Y)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Polynomial Ordering
ADD(s(X), Y) -> ACTIVATE(Y)
ADD(0, X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ADD(s(X), Y) -> ACTIVATE(X)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
ADD(s(X), Y) -> ACTIVATE(Y)
ADD(s(X), Y) -> ACTIVATE(X)
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1 POL(ADD(x1, x2)) = x1 + x2 POL(n__add(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Polynomial Ordering
ADD(0, X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
POL(0) = 0 POL(ACTIVATE(x1)) = x1 POL(ADD(x1, x2)) = x2 POL(n__add(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 7
↳Dependency Graph
ADD(0, X) -> ACTIVATE(X)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X