R
↳Dependency Pair Analysis
AAND(true, X) -> MARK(X)
AIF(true, X, Y) -> MARK(X)
AIF(false, X, Y) -> MARK(Y)
AADD(0, X) -> MARK(X)
MARK(and(X1, X2)) -> AAND(mark(X1), X2)
MARK(and(X1, X2)) -> MARK(X1)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(add(X1, X2)) -> AADD(mark(X1), X2)
MARK(add(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(first(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> MARK(X2)
MARK(from(X)) -> AFROM(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
AIF(false, X, Y) -> MARK(Y)
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), X2)
MARK(if(X1, X2, X3)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(and(X1, X2)) -> MARK(X1)
MARK(and(X1, X2)) -> AAND(mark(X1), X2)
AAND(true, X) -> MARK(X)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
AIF(false, X, Y) -> MARK(Y)
MARK(if(X1, X2, X3)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
POL(from(x1)) = 0 POL(and(x1, x2)) = x1 + x2 POL(MARK(x1)) = x1 POL(a__and(x1, x2)) = x1 + x2 POL(false) = 0 POL(true) = 0 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = x1 + x2 POL(a__from(x1)) = 0 POL(a__first(x1, x2)) = x1 + x2 POL(add(x1, x2)) = x1 + x2 POL(if(x1, x2, x3)) = 1 + x1 + x2 + x3 POL(first(x1, x2)) = x1 + x2 POL(0) = 0 POL(A__ADD(x1, x2)) = x2 POL(A__AND(x1, x2)) = x2 POL(cons(x1, x2)) = 0 POL(a__if(x1, x2, x3)) = 1 + x1 + x2 + x3 POL(nil) = 0 POL(s(x1)) = 0 POL(A__IF(x1, x2, x3)) = 1 + x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), X2)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), X2, X3)
MARK(and(X1, X2)) -> MARK(X1)
MARK(and(X1, X2)) -> AAND(mark(X1), X2)
AAND(true, X) -> MARK(X)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
MARK(first(X1, X2)) -> MARK(X1)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), X2)
MARK(and(X1, X2)) -> MARK(X1)
AAND(true, X) -> MARK(X)
MARK(and(X1, X2)) -> AAND(mark(X1), X2)
MARK(first(X1, X2)) -> MARK(X2)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
MARK(first(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> MARK(X2)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
POL(from(x1)) = 0 POL(and(x1, x2)) = x1 + x2 POL(MARK(x1)) = x1 POL(a__and(x1, x2)) = x1 + x2 POL(false) = 0 POL(true) = 0 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = x1 + x2 POL(a__from(x1)) = 0 POL(a__first(x1, x2)) = 1 + x1 + x2 POL(add(x1, x2)) = x1 + x2 POL(if(x1, x2, x3)) = x2 + x3 POL(first(x1, x2)) = 1 + x1 + x2 POL(0) = 0 POL(A__ADD(x1, x2)) = x2 POL(A__AND(x1, x2)) = x2 POL(cons(x1, x2)) = 0 POL(a__if(x1, x2, x3)) = x2 + x3 POL(nil) = 0 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Polynomial Ordering
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), X2)
MARK(and(X1, X2)) -> MARK(X1)
AAND(true, X) -> MARK(X)
MARK(and(X1, X2)) -> AAND(mark(X1), X2)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
MARK(add(X1, X2)) -> MARK(X1)
MARK(add(X1, X2)) -> AADD(mark(X1), X2)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
POL(from(x1)) = 0 POL(and(x1, x2)) = x1 + x2 POL(MARK(x1)) = x1 POL(a__and(x1, x2)) = x1 + x2 POL(false) = 0 POL(true) = 0 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = 1 + x1 + x2 POL(a__from(x1)) = 0 POL(a__first(x1, x2)) = 0 POL(add(x1, x2)) = 1 + x1 + x2 POL(if(x1, x2, x3)) = x2 + x3 POL(first(x1, x2)) = 0 POL(0) = 0 POL(A__ADD(x1, x2)) = x2 POL(A__AND(x1, x2)) = x2 POL(cons(x1, x2)) = 0 POL(a__if(x1, x2, x3)) = x2 + x3 POL(nil) = 0 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Dependency Graph
AADD(0, X) -> MARK(X)
MARK(and(X1, X2)) -> MARK(X1)
AAND(true, X) -> MARK(X)
MARK(and(X1, X2)) -> AAND(mark(X1), X2)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Polynomial Ordering
MARK(and(X1, X2)) -> MARK(X1)
AAND(true, X) -> MARK(X)
MARK(and(X1, X2)) -> AAND(mark(X1), X2)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
MARK(and(X1, X2)) -> MARK(X1)
MARK(and(X1, X2)) -> AAND(mark(X1), X2)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
POL(from(x1)) = 0 POL(and(x1, x2)) = 1 + x1 + x2 POL(MARK(x1)) = x1 POL(a__and(x1, x2)) = 1 + x1 + x2 POL(false) = 0 POL(true) = 0 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = x2 POL(a__from(x1)) = 0 POL(a__first(x1, x2)) = 0 POL(add(x1, x2)) = x2 POL(if(x1, x2, x3)) = x2 + x3 POL(first(x1, x2)) = 0 POL(0) = 0 POL(A__AND(x1, x2)) = x2 POL(cons(x1, x2)) = 0 POL(a__if(x1, x2, x3)) = x2 + x3 POL(nil) = 0 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 7
↳Dependency Graph
AAND(true, X) -> MARK(X)
aand(true, X) -> mark(X)
aand(false, Y) -> false
aand(X1, X2) -> and(X1, X2)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
afirst(X1, X2) -> first(X1, X2)
afrom(X) -> cons(X, from(s(X)))
afrom(X) -> from(X)
mark(and(X1, X2)) -> aand(mark(X1), X2)
mark(if(X1, X2, X3)) -> aif(mark(X1), X2, X3)
mark(add(X1, X2)) -> aadd(mark(X1), X2)
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(from(X)) -> afrom(X)
mark(true) -> true
mark(false) -> false
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(X1, X2)