R
↳Dependency Pair Analysis
AFROM(X) -> MARK(X)
ALENGTH(cons(X, Y)) -> ALENGTH1(Y)
ALENGTH1(X) -> ALENGTH(X)
MARK(from(X)) -> AFROM(mark(X))
MARK(from(X)) -> MARK(X)
MARK(length(X)) -> ALENGTH(X)
MARK(length1(X)) -> ALENGTH1(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳Neg POLO
ALENGTH1(X) -> ALENGTH(X)
ALENGTH(cons(X, Y)) -> ALENGTH1(Y)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alength(nil) -> 0
alength(cons(X, Y)) -> s(alength1(Y))
alength(X) -> length(X)
alength1(X) -> alength(X)
alength1(X) -> length1(X)
mark(from(X)) -> afrom(mark(X))
mark(length(X)) -> alength(X)
mark(length1(X)) -> alength1(X)
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(nil) -> nil
mark(0) -> 0
|
|
|
|
trivial
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Negative Polynomial Order
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(from(X)) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
AFROM(X) -> MARK(X)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alength(nil) -> 0
alength(cons(X, Y)) -> s(alength1(Y))
alength(X) -> length(X)
alength1(X) -> alength(X)
alength1(X) -> length1(X)
mark(from(X)) -> afrom(mark(X))
mark(length(X)) -> alength(X)
mark(length1(X)) -> alength1(X)
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(nil) -> nil
mark(0) -> 0
MARK(cons(X1, X2)) -> MARK(X1)
MARK(from(X)) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
mark(from(X)) -> afrom(mark(X))
mark(length(X)) -> alength(X)
mark(length1(X)) -> alength1(X)
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(nil) -> nil
mark(0) -> 0
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alength(nil) -> 0
alength(cons(X, Y)) -> s(alength1(Y))
alength(X) -> length(X)
alength1(X) -> alength(X)
alength1(X) -> length1(X)
POL( MARK(x1) ) = x1
POL( cons(x1, x2) ) = x1 + 1
POL( from(x1) ) = x1 + 1
POL( AFROM(x1) ) = x1
POL( s(x1) ) = x1
POL( mark(x1) ) = x1
POL( afrom(x1) ) = x1 + 1
POL( length(x1) ) = 0
POL( alength(x1) ) = 0
POL( length1(x1) ) = 0
POL( alength1(x1) ) = 0
POL( nil ) = 0
POL( 0 ) = 0
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳Dependency Graph
MARK(s(X)) -> MARK(X)
AFROM(X) -> MARK(X)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alength(nil) -> 0
alength(cons(X, Y)) -> s(alength1(Y))
alength(X) -> length(X)
alength1(X) -> alength(X)
alength1(X) -> length1(X)
mark(from(X)) -> afrom(mark(X))
mark(length(X)) -> alength(X)
mark(length1(X)) -> alength1(X)
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(nil) -> nil
mark(0) -> 0
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳DGraph
...
→DP Problem 4
↳Size-Change Principle
MARK(s(X)) -> MARK(X)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alength(nil) -> 0
alength(cons(X, Y)) -> s(alength1(Y))
alength(X) -> length(X)
alength1(X) -> alength(X)
alength1(X) -> length1(X)
mark(from(X)) -> afrom(mark(X))
mark(length(X)) -> alength(X)
mark(length1(X)) -> alength1(X)
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(nil) -> nil
mark(0) -> 0
|
|
trivial
s(x1) -> s(x1)