R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
LE(s(x), s(y)) -> LE(x, y)
PERFECTP(s(x)) -> F(x, s(0), s(x), s(x))
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), 0, z, u) -> MINUS(z, s(x))
F(s(x), s(y), z, u) -> IF(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
F(s(x), s(y), z, u) -> LE(x, y)
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
F(s(x), s(y), z, u) -> MINUS(y, x)
F(s(x), s(y), z, u) -> F(x, u, z, u)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
{perfectp, 0, false} > f > if
{perfectp, 0, false} > f > le
{perfectp, 0, false} > true
{perfectp, 0, false} > s
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
le(x1, x2) -> le(x1, x2)
if(x1, x2, x3) -> if(x1, x2, x3)
perfectp(x1) -> perfectp(x1)
f(x1, x2, x3, x4) -> f(x1, x2, x3, x4)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
LE(s(x), s(y)) -> LE(x, y)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
LE(s(x), s(y)) -> LE(x, y)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
{perfectp, f} > {true, le} > false > 0
{perfectp, f} > if > 0
minus > 0
LE > 0
s > 0
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
le(x1, x2) -> le(x1, x2)
if(x1, x2, x3) -> if(x1, x2, x3)
perfectp(x1) -> perfectp(x1)
f(x1, x2, x3, x4) -> f(x1, x2, x3, x4)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳AFS
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
F(s(x), s(y), z, u) -> F(x, u, z, u)
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
F(s(x), s(y), z, u) -> F(x, u, z, u)
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
perfectp > {f, le} > if
perfectp > {true, 0} > false
perfectp > s
F(x1, x2, x3, x4) -> F(x1, x2, x3, x4)
s(x1) -> s(x1)
minus(x1, x2) -> x1
le(x1, x2) -> le(x1, x2)
if(x1, x2, x3) -> if(x1, x2, x3)
perfectp(x1) -> perfectp(x1)
f(x1, x2, x3, x4) -> f(x1, x2, x3, x4)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 6
↳Dependency Graph
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))