Term Rewriting System R:
[x, y, u, z]
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

Termination of R to be shown.



   R
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
OC
       →TRS2
Dependency Pair Analysis



R contains the following Dependency Pairs:

PERFECTP(s(x)) -> F(x, s(0), s(x), s(x))
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
F(s(x), s(y), z, u) -> F(x, u, z, u)

Furthermore, R contains one SCC.


   R
OC
       →TRS2
DPs
           →DP Problem 1
Usable Rules (Innermost)


Dependency Pairs:

F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) -> F(x, u, z, u)


Rules:


perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))


Strategy:

innermost




As we are in the innermost case, we can delete all 6 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 2
Size-Change Principle


Dependency Pairs:

F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) -> F(x, u, z, u)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
  2. F(s(x), s(y), z, u) -> F(x, u, z, u)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1>1
4=2
4=4
{1, 2} , {1, 2}
1>1
3=3
4=2
4=4

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1>1
4=2
4=4
{1, 2} , {1, 2}
1>1
3=3
4=2
4=4

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
minus(x1, x2) -> minus(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes