Term Rewriting System R:
[x]
g(h(g(x))) -> g(x)
g(g(x)) -> g(h(g(x)))
h(h(x)) -> h(f(h(x), x))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

G(g(x)) -> G(h(g(x)))
G(g(x)) -> H(g(x))
H(h(x)) -> H(f(h(x), x))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pair:

G(g(x)) -> G(h(g(x)))


Rules:


g(h(g(x))) -> g(x)
g(g(x)) -> g(h(g(x)))
h(h(x)) -> h(f(h(x), x))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

G(g(x)) -> G(h(g(x)))
two new Dependency Pairs are created:

G(g(h(g(x'')))) -> G(h(g(x'')))
G(g(g(x''))) -> G(h(g(h(g(x'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

G(g(g(x''))) -> G(h(g(h(g(x'')))))
G(g(h(g(x'')))) -> G(h(g(x'')))


Rules:


g(h(g(x))) -> g(x)
g(g(x)) -> g(h(g(x)))
h(h(x)) -> h(f(h(x), x))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

G(g(h(g(x'')))) -> G(h(g(x'')))
two new Dependency Pairs are created:

G(g(h(g(h(g(x')))))) -> G(h(g(x')))
G(g(h(g(g(x'))))) -> G(h(g(h(g(x')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Narrowing Transformation


Dependency Pairs:

G(g(h(g(g(x'))))) -> G(h(g(h(g(x')))))
G(g(h(g(h(g(x')))))) -> G(h(g(x')))
G(g(g(x''))) -> G(h(g(h(g(x'')))))


Rules:


g(h(g(x))) -> g(x)
g(g(x)) -> g(h(g(x)))
h(h(x)) -> h(f(h(x), x))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

G(g(g(x''))) -> G(h(g(h(g(x'')))))
three new Dependency Pairs are created:

G(g(g(x'''))) -> G(h(g(x''')))
G(g(g(h(g(x'))))) -> G(h(g(h(g(x')))))
G(g(g(g(x')))) -> G(h(g(h(g(h(g(x')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 4
Polynomial Ordering


Dependency Pairs:

G(g(g(g(x')))) -> G(h(g(h(g(h(g(x')))))))
G(g(g(h(g(x'))))) -> G(h(g(h(g(x')))))
G(g(g(x'''))) -> G(h(g(x''')))
G(g(h(g(h(g(x')))))) -> G(h(g(x')))
G(g(h(g(g(x'))))) -> G(h(g(h(g(x')))))


Rules:


g(h(g(x))) -> g(x)
g(g(x)) -> g(h(g(x)))
h(h(x)) -> h(f(h(x), x))





The following dependency pairs can be strictly oriented:

G(g(g(g(x')))) -> G(h(g(h(g(h(g(x')))))))
G(g(g(h(g(x'))))) -> G(h(g(h(g(x')))))
G(g(g(x'''))) -> G(h(g(x''')))
G(g(h(g(h(g(x')))))) -> G(h(g(x')))
G(g(h(g(g(x'))))) -> G(h(g(h(g(x')))))


Additionally, the following usable rule w.r.t. to the implicit AFS can be oriented:

h(h(x)) -> h(f(h(x), x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  1  
  POL(G(x1))=  x1  
  POL(h(x1))=  0  
  POL(f(x1, x2))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 5
Dependency Graph


Dependency Pair:


Rules:


g(h(g(x))) -> g(x)
g(g(x)) -> g(h(g(x)))
h(h(x)) -> h(f(h(x), x))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes