R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
EQ(s(x), s(y)) -> EQ(x, y)
MINSORT(cons(x, y)) -> MIN(x, y)
MINSORT(cons(x, y)) -> MINSORT(del(min(x, y), cons(x, y)))
MINSORT(cons(x, y)) -> DEL(min(x, y), cons(x, y))
MIN(x, cons(y, z)) -> IF(le(x, y), min(x, z), min(y, z))
MIN(x, cons(y, z)) -> LE(x, y)
MIN(x, cons(y, z)) -> MIN(x, z)
MIN(x, cons(y, z)) -> MIN(y, z)
DEL(x, cons(y, z)) -> IF(eq(x, y), z, cons(y, del(x, z)))
DEL(x, cons(y, z)) -> EQ(x, y)
DEL(x, cons(y, z)) -> DEL(x, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Remaining
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
LE(s(x), s(y)) -> LE(x, y)
POL(LE(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Remaining
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Remaining
EQ(s(x), s(y)) -> EQ(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
EQ(s(x), s(y)) -> EQ(x, y)
POL(EQ(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Remaining
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Remaining
MIN(x, cons(y, z)) -> MIN(y, z)
MIN(x, cons(y, z)) -> MIN(x, z)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
MIN(x, cons(y, z)) -> MIN(y, z)
MIN(x, cons(y, z)) -> MIN(x, z)
POL(cons(x1, x2)) = 1 + x2 POL(MIN(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Remaining
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Remaining
DEL(x, cons(y, z)) -> DEL(x, z)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
DEL(x, cons(y, z)) -> DEL(x, z)
POL(DEL(x1, x2)) = x2 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 9
↳Dependency Graph
→DP Problem 5
↳Remaining
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Remaining Obligation(s)
MINSORT(cons(x, y)) -> MINSORT(del(min(x, y), cons(x, y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))